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Abstract. The accurate prediction of traffic flow is a fundamental component of intelligent 

transportation systems and smart city planning. Conventional methodologies frequently 

encounter difficulties in capturing the intricate and evolving spatial-temporal interdependencies 

intrinsic to traffic data. Recent advances have employed Graph Neural Networks (GNNs) and 

attention mechanisms to address these challenges. However, existing models typically address 

spatial and temporal dependencies in isolation and may not fully leverage multi-modal 

interactions within the data. This paper proposes a novel framework, the Multi Modal Traffic 

Flow Encoder (MMTFE), which integrates temporal attention, spatial attention, and Temporal 

Convolutional Networks (TCN) for the joint modeling of the complex spatial-temporal patterns 

observed in traffic flows. By combining these components in a unified architecture, our model 

effectively captures dynamic dependencies and improves prediction accuracy. The superiority 

of the proposed approach is substantiated by comprehensive experimental investigations on 

actual traffic data sets, which reveal that it outperforms existing cutting-edge techniques. 

Keywords: traffic flow, attention mechanism, multi-modal, Transformer. 

1.  Introduction 

Traffic flow forecasting is crucial for intelligent transportation systems (ITS), enabling effective traffic 

management, route optimization, and congestion reduction. The complex nature of traffic data, with its 

dynamic spatial-temporal dependencies and non-linear patterns, presents significant prediction 

challenges [1,2]. 

Conventional machine learning techniques, including time series and statistical models, often 

struggle to capture the non-linear and high-dimensional aspects of traffic data [2]. Recent advancements 

in deep learning have shown promise in addressing these issues [3]. While Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) have been applied to model spatial and 

temporal dependencies respectively [4,5], they may not adequately capture the intricate interplay 

between spatial and temporal dimensions in traffic data. 

The use of Graph Neural Networks (GNNs) to model the relational structures in traffic networks 

represents a novel approach to representing road networks as graphs [6]. While GNN-based models like 

Diffusion Convolutional Recurrent Neural Networks (DCRNN) [5] and Graph WaveNet [7] have 

achieved notable success, they primarily focus on capturing spatial dependencies through graph 

convolutions and temporal dependencies through recurrent units or temporal convolutions separately. 
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In addition, attention mechanisms have been utilized in the context of traffic prediction with the goal 

of developing a dynamic model that accounts for dependencies. For instance, Spatial-Temporal 

Attention networks [8] and Graph Multi-Attention Networks (GMAN) [9] leverage attention to capture 

spatial-temporal correlations. Despite these advancements, existing models often handle spatial and 

temporal components in isolation or combine them in a sequential manner, which may limit their ability 

to fully exploit the multi-modal interactions present in traffic data. Specifically, the current studies 

highlight several limitations in recent traffic prediction models: 

• Separate Modeling of Spatial and Temporal Dependencies: A significant number of models adopt a 

distinct approach to the treatment of spatial and temporal dependencies, which may not fully account 

for the complex interrelationships between these two factors [10]. 

• Inadequate Integration of Multi-Scale Temporal Patterns: Temporal patterns in traffic data can vary 

across different scales (e.g., short-term fluctuations and long-term trends), and models may not 

effectively integrate these multi-scale patterns [11]. 

• Limited Capacity in Modeling Complex Spatial-Temporal Interactions: Existing models may 

struggle to capture higher-order interactions and non-linear relationships inherent in traffic flow 

dynamics [12]. 

To address these shortcomings, we introduce the Multi-Modal Traffic Flow Encoder (MMTFE), a 

novel architecture combining spatial-temporal attention mechanisms with temporal convolutional 

networks (TCN) to model complex traffic data dependencies. Our model comprises three key 

components: 

• Temporal Attention Module: Focuses on relevant time steps, capturing dynamic temporal 

dependencies including recent trends and periodic behaviors. 

• Spatial Attention Module: Identifies significant locations within the traffic network, conceptualizing 

interrelationships between different points and adaptively assessing regional impacts based on 

current traffic dynamics. 

• Temporal Convolutional Networks (TCN): Incorporates multiple temporal convolutional layers with 

varying kernel sizes to capture a full range of temporal patterns. This hierarchical representation 

allows the model to discern both short- and long-term fluctuations. 

By integrating these components, MMTFE effectively models high-order spatial-temporal 

interactions and captures complex traffic flow dynamics. Residual connections and layer normalization 

enhance the model's capacity and stability. The main contributions of this work can be summarized as 

follows: 

• Unified Spatial-Temporal Modeling: A novel framework jointly models spatial and temporal 

dependencies, overcoming limitations of separate treatment. 

• Multi-Scale Temporal Feature Extraction: TCN with varied kernel sizes improves both short-term 

and long-term traffic flow predictions. 

• Improved Prediction Performance: Extensive experiments on real-world datasets demonstrate the 

model's superior performance compared to existing state-of-the-art methods, validating its efficacy 

in capturing intricate spatial-temporal interactions and reinforcing its practical utility. 

2.  Methods 

The MMTFE model employed in this experiment is based on the currently advanced open-source model, 

PDFormer [13]. Improvements have been made to the MMTFE model because PDFormer introduces a 

more advanced masking matrix, which has the potential to enhance the model's performance. 
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2.1.  Notations and Definitions  

In this context, the term 𝑋𝑡 ∈ ℝ𝑁×𝐶 is employed to denote the traffic flow occurring at time t of 𝑁 nodes 

in the road network. The dimension of the traffic flow is represented by the variable 𝐶. For instance, if 

the data set includes both inflow and outflow, then 𝐶 = 2. 

2.2.  Model Overview 

The input data is initially subjected to processing by the Data Embedding Layer, whereby the raw 

features are transformed into a high-dimensional embedding space that incorporates both spatial and 

temporal information. The embedded data is then subjected to a series of encoder blocks. In each block, 

the following occurs: a) The spatio-temporal self-attention mechanism processes the data, capturing 

complex spatio-temporal dependencies. b) The output is further transformed by a Multilayer Perceptron. 

c) The MMTFE refines the representations, integrating multiple perspectives on the traffic data. Skip 

connections are incorporated into the final layers of the model, enabling the utilization of both low-level 

and high-level features. Ultimately, the output layers transform the learned representations into the 

predicted traffic states. 

2.3.  Spatio-Temporal Self-Attention (SSA)  

The traditional approach to self-attention allows for all-to-all node interactions, which can result in a 

high computational cost and potentially diffuse attention. However, in traffic networks, only a subset of 

node interactions is crucial—particularly those between nearby nodes or distant nodes with similar 

traffic patterns. 

To address this, our SSA mechanism incorporates two graph masking matrices to focus the model's 

attention and reduce complexity: 

• Geographic Masking Matrix (𝑀𝑔𝑒𝑜): Captures short-range spatial dependencies by defining a binary 

matrix where: 

 𝑀𝑔𝑒𝑜(𝑖, 𝑗) = {0 otherwise
1 if distance between nodes 𝑖 and 𝑗<λ

 (1) 

where λ is a distance threshold. This masks attention between nodes that are geographically distant from 

each other, focusing the model on local interactions. The geographic masking matrix ensures that the 

model concentrates on nearby nodes within a certain distance λ, effectively capturing short-range spatial 

dependencies critical for traffic flow prediction. 

• Semantic Masking Matrix (𝑀sem): Captures long-range spatial dependencies by identifying nodes 

with similar traffic patterns, even if they are geographically distant. 

2.4.  Soft Dynamic Time Warping for Semantic Masking Notations and Definitions  

To construct𝑀sem , we use Soft Dynamic Time Warping (SoftDTW) [14]. Unlike traditional DTW, 

which focuses on the optimal alignment path between two time series, SoftDTW introduces a smoothing 

factor γ to consider all possible alignment paths, weighted according to their similarity scores. This 

approach is more robust to noise and can capture subtle similarities in traffic patterns. There are the 

following steps: 

Frist, we compute similarities using SoftDTW. For each pair of nodes, we compute the similarity of 

their historical traffic flows using SoftDTW: 

 SoftDTW𝛾(𝑋𝑖, 𝑋𝑗) = softmin𝛾 (∑ cost𝑝𝑝∈𝑃 (𝑋𝑖 , 𝑋𝑗)) (2) 

where 𝑋𝑖 and 𝑋𝑗 are the time series of nodes i and j, 𝑃 is the set of all possible alignment paths, and 

cost𝑝 is the cost of path 𝑝. The smoothing factor γ controls the sensitivity to different alignment paths. 

SoftDTW computes a smoothed similarity score by considering all possible alignments between two 

time series, rather than focusing solely on the optimal path. This makes it sensitive to local changes and 

robust to noise. 
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In order to select the Semantic Neighbors, proceed as follows: In regard to each node, the most 

relevant 𝐾 nodes, as determined by their SoftDTW similarity scores, are to be identified as its semantic 

neighbors. Nodes with analogous historical traffic patterns are identified as semantic neighbors, thereby 

capturing long-range dependencies that arise from analogous urban functionalities. Finally, we construct 

Semantic Masking Matrix (𝑀sem): 

 𝑀𝑠𝑒𝑚(𝑖, 𝑗) = {0 otherwise
1 if node 𝑗 is among the top  𝐾 similar nodes to nodes 𝑖

 (3) 

This masking matrix allows the model to focus on node pairs that, despite being geographically 

distant, exhibit analogous traffic patterns due to similar urban functions. 

2.5.  Multi-Modal Traffic Flow Encoder 

The Multi-Modal Traffic Flow Encoder comprises three principal components. The model incorporates 

three main components: temporal attention, spatial attention, and a temporal convolutional network 

(TCN). Each of these components addresses a specific aspect of traffic flow dynamics. 

2.5.1.  The Temporal Attention component 

The Temporal Attention component identifies and captures temporal dependencies within the traffic 

data. It operates on transformed input, allowing for more efficient parallel processing across both spatial 

and temporal dimensions. This mechanism enables the model to discern and leverage important time-

based patterns in the data for improved prediction accuracy. 

The Reshaping and Layer Normalization is used to reshape the input tensor𝑋 ∈ ℝ𝐵×𝑇×𝑁×𝐶to focus 

on temporal sequences for each node: 𝑋𝑡𝑒𝑚𝑝 = 𝑋 resharped to (𝐵 × 𝑁, 𝑇, 𝐶)  and apply layer 

normalization: 𝑋
~

𝑡𝑒𝑚𝑝 = LayerNorm(𝑋𝑡𝑒𝑚𝑝) layer normalization standardizes the input, improving 

training stability and convergence. By reshaping, we treat the data as a collection of time series, one for 

each node, facilitating temporal attention across time steps for each node. Then, the Query, Key, and 

Value matrices is used to transform the normalized inputs into query, key, and value representations 

necessary for attention computation, as follows: 

 𝐾(𝑡) = 𝑋
~

𝑡𝑒𝑚𝑝𝑊𝐾
(𝑡)

, 

~
( ) ( )t t

temp KK X W= , 𝑉(𝑡) = 𝑋
~

𝑡𝑒𝑚𝑝𝑊𝑉
(𝑡)

 (4) 

where 𝑊𝑄
(𝑡)

, 𝑊𝐾
(𝑡)

, 𝑊𝑉
(𝑡)

∈ ℝ𝐶×𝐶  are learnable weight. The Scaled Dot-Product Attention is used to 

calculate attention scores as follows: 

 𝐴(𝑡) = softmax (
𝑄(𝑡)(𝐾(𝑡))

⊤

𝑑1/2 ) (5) 

where 𝑑 = 𝐶  is the scaling factor (feature dimension). The attention scores determine the relevance of 

each time step in the sequence by measuring similarities between queries and keys, scaled to prevent 

extreme values. The output of attention is as follows: TSA(𝑋𝑡𝑒𝑚𝑝) = 𝐴(𝑡)𝑉(𝑡)The output is a weighted 

sum of the value vectors, where weights are the attention scores, highlighting important temporal 

features. Next, the residual connection and dropout are employed to reinstate the attention output to the 

input, thereby facilitating gradient flow and enhancing the efficacy of the training process. The 

application of dropout regularizes the model, preventing the excessive reliance on specific features, as 

follows: 

 𝑋𝑇𝑆𝐴
(𝑡)

= 𝑋𝑡𝑒𝑚𝑝 + Dropout (𝑇𝑆𝐴(𝑋(𝑡))) (6) 

Finally, the data is reshaped back to its original dimensions for further processing, as follows: 

 𝑋𝑇𝑆𝐴
(𝑡)

= Reshape (𝑋𝑇𝑆𝐴
(𝑡)

, 𝐵 × 𝑁 × 𝑇 × 𝐶) (7) 
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2.5.2.  Spatial Attention component  

The Spatial Attention component models spatial relationships between network nodes, enabling the 

discernment of crucial spatial dependencies in traffic prediction that would otherwise be challenging to 

capture. 

The input reshaping and layer normalization is used to make the model more focused on the 

spatiotemporal relationships between nodes by treating each time step separately, as follows: 𝑋𝑠𝑝𝑎𝑡 =

𝑋 resharped to (𝐵 × 𝑁, 𝑇, 𝐶) Then the model will apply layer normalization, as follows: 

 𝑋
~

𝑠𝑝𝑎𝑡 = LayerNorm(𝑋𝑠𝑝𝑎𝑡) (8) 

Then, the Query, Key, and Value Matrices is computed. Similar to the temporal attention 

component but across spatial dimensions. The masks component is used to Compute Scaled Dot-

Product Attention with Masks, as follows: 

 𝐴(𝑠) = softmax (
𝑄(𝑠)(𝐾(𝑠))

⊤

𝑑1/2 + 𝑀) (9) 

Where 𝑀 = 𝑙𝑜𝑔 𝑀geo + 𝑙𝑜𝑔 𝑀sem . The attention scores incorporate the 𝑀𝑔𝑒𝑜 and 𝑀sem  masks, 

ensuring that attention is only paid to significant node pairs. The attention output component and residual 

connection compute component of 𝑋𝑆𝑆𝐴 is similarly to𝑋𝑇𝑆𝐴 

2.5.3.  The Temporal Convolutional Network (TCN) component. 

This component enables the capture of multi-scale temporal patterns through convolutional operations 

across the time dimension. The employment of multiple kernel sizes (3, 5, and 7) enables the model to 

simultaneously capture both short-term and longer-term temporal dependencies. 

The permute for convolution is used to rearranged the input to position the temporal dimension 

appropriately for convolutional operations, as follows: 

 𝑋𝑐𝑜𝑛𝑣 = 𝑋 permuted to (𝐵 × 𝑁, 𝑇, 𝐶) (10) 

Then the model applies the temporal convolutions with different kernel sizes, as follows: 

 𝑋𝑘
(𝑐)

= Conv2D(𝑘,1)(𝑋𝑐𝑜𝑛𝑣) (11) 

where kernel sizes k ∈ {3,5,7}, and Conv2D(k,1) denotes a convolutional layer with kernel size (k,1) and 

appropriate padding. Convolutions with different kernel sizes capture patterns over varying temporal 

spans, from short-term fluctuations to longer-term trends. Next, the aggregate convolution outputs are 

employed for the purpose of averaging the outputs, which can assist in the blending of information from 

disparate temporal scales. The following is an illustration of this process: 

 𝑋𝑇𝐶𝑁
(𝑐)

=
1

𝐾
∑ 𝑋𝑘

(𝑐)
𝑘  (12) 

where 𝐾 = 3is the number of kernel sizes used.  

The permute back and layer normalization ensures that the convolutional outputs are adequately 

conditioned for subsequent processing, as detailed below: 

 𝑋𝑇𝐶𝑁 = Permute (𝑋𝑇𝐶𝑁
(𝑐)

) → (𝐵, 𝑇, 𝑁, 𝐶) (13) 

 𝑋
~

𝑇𝐶𝑁 = LayerNorm(𝑋𝑇𝐶𝑁) (14) 

The residual connection and dropout are employed to assist the model in retaining crucial information 

from preceding layers, while preventing overfitting. This is achieved through the following methodology: 

 𝑋𝑇𝐶𝑁
' = 𝑋𝑇𝐶𝑁

(𝑐)
+ Dropout(𝑋

~

𝑇𝐶𝑁) (15) 
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2.6.  Feature Fusion and Final Projection 

Following the processing of the temporal attention, spatial attention, and TCN components, the features 

are integrated. Initially, the features are combined, and then residual connections are employed to 

integrate the original input with the outputs from the aforementioned three components. The resulting 

integration is expressed as follows: 

 𝑋𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑋 + 𝑋𝑇𝑆𝐴 + 𝑋𝑆𝑆𝐴 + 𝑋𝑇𝐶𝑁
'  (16) 

The original input and the enhanced representations from each component are combined, allowing 

the model to utilize comprehensive spatio-temporal information. Subsequently, the model employs a 

final linear projection. A linear transformation should be applied in order to project the combined 

features to the desired output dimension, as follows: 

 𝑋𝑇𝐶𝑁 = Permute (𝑋𝑇𝐶𝑁
(𝑐)

) → (𝐵, 𝑇, 𝑁, 𝐶) (17) 

where 𝑋𝑝𝑟𝑜𝑗 ∈ ℝ𝐶×𝐶  and 𝑏𝑝𝑟𝑜𝑗 ∈ ℝ𝐶  are learnable parameters. This linear projection maps the 

combined features into the desired output dimension (e.g., predicted traffic flow values). In conclusion, 

the model employs both dropout and layer normalization. The application of dropout and layer 

normalization serves to regularize and stabilize the learning process. The application of dropout 

facilitates generalization by impeding the co-adaptation of neurons, while layer normalization stabilizes 

the output prior to the prediction step. 

3.  Experiments 

3.1.  Datasets 

The model was evaluated on two real-world datasets, NYTaxi [15] and CHBike [15], which encompass 

both inflow and outflow data. The specifics are outlined in Table 1. 

• The NYTaxi collection is based in New York, USA. It comprises GPS data on the trajectories of 

various types of taxis collected in New York City between 2009 and 2020. 

• The CHBike dataset is located in Chicago, USA. This dataset illustrates the evolution of bicycle-

sharing programs in Chicago from 2013 to 2018. 

Table 1. Dataset Statistics. 

 #Nodes #Interval Time range 

NYTaxi 75(15x5) 30min 01/01/2014-12/31/2014 

CHBike 270(15x18) 30min 07/01/2020-09/30/2020 

3.2.  Baselines 

To ascertain the efficacy of our proposed methodology, we have identified six exemplar baselines, which 

can be classified into two principal categories. (1) Graph Neural Network-based Models: the models 

selected for comparison are MTGNN [16], STFGNN [17], and STGNCDE [18]; and (2) self-attention-

based models: we select GMAN [19], ASTGNN [20], and PDFormer [13] for analysis. 

4.  Experimental Settings 

4.1.  Dataset Processing 

The methodology employed in this study is largely consistent with that of other models, with a ratio of 

7:1:2 allocated to the training set, validation set, and test set, respectively. The model employs recent 

30-minute traffic inflow and outflow data to project future traffic patterns over the subsequent 30 

minutes. Prior to training, all datasets undergo Z-score normalization to ensure uniformity and 

standardization of the input. 
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4.2.  Model Settings  

The experimental setup utilized machines featuring an NVIDIA GeForce 4090D GPU and 80GB of 

RAM for all tests conducted. The operating system utilized was Ubuntu 20.04, with PyTorch 2.0.0 and 

Python 3.8. The AdamW optimizer [21], with a learning rate of 0.001, was employed for model training.  

The batch size is 16, and the training epoch for is 50.  

4.3.  Evaluation Metrics  

Model assessment utilized Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 

Root Mean Squared Error (RMSE). In testing, samples with flow values under 10 were excluded, except 

for CHBike, where the threshold was 5. The final result was derived from the average of inflow and 

outflow evaluation metrics. To ensure reliability, all experiments were conducted multiple times, with 

average results reported. 

4.4.  Performance Comparison  

A comparison of the results obtained from the baseline model is presented in Table 2 and Table 3 below. 

From these two tables, we can draw the following conclusions: 

• MMTFE has certain advantages in all metrics across all datasets. Compared to the second-best model, 

PDFormer, MMTFE showed an average improvement of 1.31%, 1.79% and 1.76% in the 

MAE/MAPE/RMSE indicators. 

• Our model has certain advantages over both GNN and Transformer. The reason is that the model can 

capture short- and long-range spatial dependencies on a spatial scale and temporal dependencies on 

a temporal scale. 

Table 2. Performance on CHBike Datasets (MAPE is in %). 

 MTGNN STFGNN STGNCDE GMAN ASTGNN PDFormer MMTFE 

MAE 4.099 4.249 4.109 4.102 4.024 3.919 3.840 

MAPE 30.855 32.272 30.873 30.906 30.874 30.511 29.729 

RMSE  15.738 5.904 5.796 5.792 5.713 5.512 5.393 

Table 3. Performance on NYTaxi Datasets (MAPE is in %). 

 MTGNN STFGNN STGNCDE GMAN ASTGNN PDFormer MMTFE 

MAE 13.233 14.257 13.279 13.270 12.978 11.995 11.923 

MAPE 13.818 14.727 13.926 13.893 13.647 13.435 13.298 

RMSE  20.264 22.380 20.322 20.309 19.867 18.917 18.659 

5.  Ablation Study 

In order to gain further insight into the role of different components in MMTFE, a comparative analysis 

was conducted between MMTFE and the following variables: (1) the variant w/o s-DTW employs DTW 

in place of soft DTW, (2) w/o temporal-attn, which excludes Temporal Attention, (3) w/o spatial-attn, 

which excludes Spatial Attention, and (4) w/o TCN, which excludes Temporal Convolutional Network. 

 

Figure 1. Ablation study on CHBike dataset. 
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Figure 2. Ablation study on NYTaxi dataset. 

As shown in Figure 1 and Figure 2, these two figures illustrate the performance outcomes of these 

variants on CHBike and NYTaxi. The results indicate that (1) soft DTW performs better than DTW in 

the majority of cases, (2) the performance of the variant MMTFE without Temporary Attention has been 

significantly enhanced on several datasets, thereby underscoring its value, and (3) the performance of 

the variant MMTFE without TCN has been significantly enhanced on several datasets, thereby 

indicating that time dependence is a pivotal element to be taken into account in the model. 

6.  Conclusions 

This research proposes a hybrid transformer-TCN model for traffic prediction, exhibiting strong 

dynamic spatiotemporal dependence. We introduce a Multi-Modal traffic encoder comprising temporal 

attention, spatial attention, and temporal convolutional network components. These elements 

collectively capture short-term and long-term temporal and spatial dependencies. We validated our 

model's effectiveness through experiments on two real-world datasets. Future research will explore the 

application of large language models to traffic prediction tasks [22], aiming to improve the efficiency 

and performance of traffic forecasting systems. 
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