
 

 

Research Status of Vehicle Trajectory Planning 

Du Wang 

School of Electrical and Information Engineering, Beihua University, Jilin, China 

3442060094du@gmail.com 

Abstract. As autonomous driving technology has advanced, it has drawn attention from all 

around the world. The implementation of autonomous driving technology has the potential to 

enhance traffic safety, minimize traffic accidents, boost efficiency, facilitate travel, conserve 

energy, and lower emissions. Autonomous driving technology includes environmental 

perception, path planning, behavioral decision-making and other technologies. Among them, 

trajectory planning and control technology is the key technology to realize autonomous driving 

of automobiles and is the concrete embodiment of automobile intelligence. Graph search 

algorithms, numerical optimization algorithms, curve fitting algorithms, artificial potential field 

algorithms, random sampling algorithms, etc. are currently in widespread usage in the field of 

autonomous driving research. This article will introduce vehicle trajectory planning based on 

these commonly used algorithms. The necessity of autonomous driving technology research is 

not only reflected in technological progress, but also covers social security, economic benefits, 

environmental protection, travel convenience and global competition. By studying autonomous 

driving technology, humans can better cope with the current challenges of traffic and 

environment, and at the same time provide strong support for future intelligent transportation 

and urban planning. 
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1.  Introduction 

By 2023, China's car ownership has exceeded 320 million, continuing to rank first in the world. China's 

car ownership has grown rapidly, especially in the past 20 years, with the number of cars rising rapidly 

from less than 20 million in 2000 to 320 million today [1]. Cars play a huge role in people's daily lives 

and travel. However, the large-scale use of cars has also brought a huge burden to the transportation 

system, causing a series of traffic accidents. The World Health Organization reports that each year, 

automobile accidents cause around 50 million injuries and nearly 1.3 million deaths globally [2]. 

Autonomous driving technology can greatly improve traffic safety by eliminating or reducing human 

errors. Autonomous driving systems will not get tired, distracted or lose control of their emotions, and 

can always maintain an efficient response speed and comply with traffic rules. Through precise sensors, 

real-time data analysis and rapid response, autonomous vehicles can foresee and avoid potential dangers 

and reduce the occurrence of collision accidents. Autonomous vehicles can also optimize vehicle speed 

and reduce emergency stops and brakes through real-time communication with other vehicles and 

infrastructure, ensuring smooth operation of vehicles on the road and avoiding traffic jams. Especially 

during peak hours in the city, the autonomous driving system can automatically adjust the speed and 

change lanes to ensure more orderly traffic flow. 
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The three primary modules of the autonomous driving system are motion control, decision planning, 

and environmental perception. The environmental perception module of the autonomous driving system 

is responsible for accurately identifying and understanding the surrounding driving environment through 

the fusion technology of multiple sensors on board. For the purpose of path planning and control later 

on, real-time information gathering about the vehicle's own posture, surrounding obstacles' positions 

and shapes, and traffic signs and markings allow for a detailed understanding of the environmental 

condition. The fundamental component of autonomous driving cars is decision planning, which has two 

types of path planning: local path planning and global path planning. They are responsible for different 

tasks, but cooperate with each other to achieve safe and reliable autonomous driving. Global planning 

is the generation of an overall driving path from point A to point B by the autonomous driving system 

based on the starting point and destination. Local planning is to adjust the driving strategy in real time 

based on the dynamic environment around the vehicle on the basis of the global path. In order to 

guarantee that the vehicle can drive safely, local planning is in charge of managing real-world driving 

scenarios, such as dodging obstacles, managing traffic flow, following cars, changing lanes, passing, 

etc. The main function of the motion control module is to convert high-level planning output (such as 

paths and trajectories) into control commands that the vehicle actually uses to operate its steering, 

braking, and power systems. The core goal of the motion control module is to ensure that the vehicle 

moves safely and smoothly according to the predetermined trajectory, and to ensure driving comfort and 

safety. 

Driving safely and effectively requires autonomous vehicles to behave in a certain way, including 

changing lanes. At present, the main challenges of lane changing behavior are traffic conditions change 

frequently, and when changing lanes, it is necessary to judge the speed and position of surrounding 

vehicles in time to avoid potential dangers. In complex scenes such as urban environments and 

intersections, lane changing behavior needs to comprehensively consider multiple factors, such as 

pedestrians, non-motorized vehicles, traffic signals, etc., which increases the difficulty of decision-

making. The trajectory planning and decision-making capabilities of autonomous vehicles dictate the 

accuracy of the control execution system, and the control execution system's quality determines the 

success of autonomous driving technology. Therefore, studying trajectory planning is a very important 

topic. This article introduces five widely used algorithms in autonomous driving trajectory planning. 

The iterative process of each algorithm is shown in this article. Problems solved by the improved 

algorithm and new problems that arise, the principles of each algorithm, and their advantages and 

disadvantages in different applications. This article helps researchers and practitioners in the field of 

autonomous driving to better grasp the nuances of trajectory planning, enabling them to make informed 

decisions on which algorithms to adopt or improve upon for safer and more efficient autonomous driving 

systems. 

2.  Current status of vehicle trajectory planning research 

2.1.  Graph search algorithm 

A set of algorithms known as graph search algorithms is used to locate pathways or look for certain data 

inside a graph structure (nodes and edges). Among graph search algorithms, the most common 

algorithms are the Dijkstra algorithm, D algorithm and A* algorithm. Dijkstra proposed Dijkstra's 

algorithm in 1959 to determine the best route from the beginning to the destination [3]. However, when 

the starting point and the end point are far apart, the algorithm needs to traverse a large number of nodes, 

resulting in low operating efficiency. In order to bias the search direction toward the target location, the 

A* algorithm incorporates heuristic data derived from the Dijkstra algorithm. Reduce the number of 

node traversals and narrow the search scope, effectively improving the efficiency of the algorithm. The 

paths generated by the A* algorithm are highly discrete and do not consider moving bodies with non-

integrity constraints such as vehicles [4]. The hybrid A* algorithm optimizes the solution through 

nonlinear optimization based on the A* algorithm to obtain a better global or local optimal solution [5]. 

The D* algorithm was first proposed by Stentz in 1994. The overall time needed for both the initial path 
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computation and any follow-up re-planning activities can be greatly decreased by using this technique. 

To achieve complete and optimal planning of paths in a changing environment [6]. 

2.2.  Numerical optimization algorithms 

Minimizing the objective function under different constraint function conditions for optimization and 

solution is the fundamental principle of numerical optimization techniques. However, the computational 

complexity and sensitivity to initial conditions of numerical optimization algorithms are their main 

disadvantages. In practical applications, it is usually necessary to balance the solution accuracy and real-

time performance of the algorithm and combine other methods to meet specific needs. Eiras et al. [7] 

proposed an improved constrained optimization method, which transforms the initial planning problem 

into a nonlinear non-convex optimization problem through a mixed integer linear programming (MILP) 

model to improve the convergence and solution quality of autonomous driving safety planning. The 

nonlinear model predictive control (NMPC) method used in the autonomous driving trajectory planner 

presented by Micheli et al. [8] improved the vehicle trajectory planning system's resilience. 

2.3.  Curve fitting algorithm  

Curve fitting algorithms are used to find a curve that is as close as possible to a set of data points. Curve 

fitting's primary objective is to identify a curve, by parameter adjustment, that minimizes the error 

between it and the provided data. 

2.3.1.  Line segment + Arc. By using a combination of line segments and arcs, the shortest and smoothest 

path can be generated given the position vectors of two points. The curve fitting algorithm of line 

segments and arcs is a class of algorithms specifically used to fit curves composed of straight line 

segments and arc segments. The more representative ones are Dubins and Reeds-Shepp. For vehicles or 

robots with limited forward direction, the Dubins curve ensures that the path is the shortest in a flat 

environment without obstacles. The Dubins curve assumes that the vehicle cannot go backward, so it is 

not suitable for robots or vehicles that can go backward. In addition, this method can only generate the 

optimal path in a flat environment without obstacles, and needs to be combined with other path planning 

algorithms when encountering obstacles. The Reeds-Shepp curve allows the vehicle to not only drive 

forward but also go backward during path planning. This makes the path more flexible, especially for 

scenarios where the direction needs to be adjusted multiple times. Due to its simplicity, subsequent 

studies often integrate these methods into other algorithms. For instance, the CL-RRT algorithm uses 

the Dubins curve to increase the efficacy of sampling point generation [9], while the Hybrid A* 

algorithm uses the Reeds-Shepp curve to improve the quality of the search path [5].  

2.3.2.  Polynomial curve. The characteristics of polynomial curves are the geometric continuity of the 

path and the smooth transition of acceleration. For polynomial curves of appropriate order, both lateral 

and longitudinal motion parameters can ensure continuous and smooth changes. Werling et al. [10] 

proposed a control theory method based on the Frenet framework, which transforms the trajectory 

generation problem into a two-dimensional problem and uses a quintic polynomial function to generate 

the optimal trajectory to adapt to different tasks and imitate human driving behavior. Wang et al. [11] 

adopted a point-to-point trajectory planning method, using fourth-order quartic polynomial acceleration 

and constant speed combined with near-real-time optimization to minimize execution time and improve 

efficiency.  

2.3.3.  Bezier curve. Bezier curves are known for their ability to shape curves directly from control 

points, and only a small number of control points are needed to generate complex and smooth curves. 

Chen and colleagues [12] presented a fourth-order Bezier curve-based approach for autonomous vehicle 

trajectory planning. To guarantee the continuity of acceleration and velocity, a continuous trajectory that 

complies with kinematic constraints is created using parameterized expressions and control point 

selection. Han et al. [13] used Bézier curves for path planning to achieve path tracking of continuous 
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trajectories, while selecting appropriate control points to ensure the smoothness of the path and avoid 

obstacles. The chaotic particle swarm optimization (CPSO) approach was used by Tharwat et al. [14] to 

optimize the control points of the Bezier curve in a route planning model based on Bezier curves, and 

the result was the shortest and smoothest path between the beginning point and the endpoint.  

2.3.4.  B-spline curve. Similar to a Bezier curve, the real curve's shape is determined by a group of 

control points; however, instead of passing through the surrounding control points, the actual curve is 

sculpted into a smooth curve. A path planning technique based on B-spline curves was suggested by Qu 

et al. [15] for autonomous vehicles. Using a step-by-step planning model, the method creates an ideal 

path that satisfies the vehicle's kinematic requirements and is free of collisions. 

2.3.5.  Spiral. This type of curve is defined in the form of Fresnel integrals. Since the curvature varies 

linearly with the arc length, a smooth transition between straight and curved segments can be achieved. 

Kim et al. [16] presented a mobile robot motion planning method based on Bloyd curves. This approach 

reduces the path's curvature change as well as its length. 

2.4.  Artificial potential field method  

The conventional path planning approach, the artificial potential field algorithm, enables the robot to 

find a path to the objective via obstacles by synthesizing gravitational and repulsive forces. Although 

the basic algorithm has problems such as local minima, its application effect in complex environments 

can be greatly improved by improving the algorithm and combining other technologies, such as 

reinforcement learning and dynamic programming. Tu et al. [17] proposed an improved artificial 

potential field algorithm, which solves the problems of unreachable targets, local minima traps and long 

path lengths encountered by the traditional artificial potential field method in the obstacle avoidance 

path planning of unmanned aerial vehicles by introducing relative distance, control force and detection 

factor. A path planning technique for autonomous cars based on obstacle avoidance and an enhanced 

artificial potential field algorithm was presented by Wang et al. [18]. A safety model was created by 

examining how drivers avoid impediments, and the artificial potential field method was enhanced to 

recreate the repulsive field range of obstacles. 

2.5.  Random sampling algorithm  

Path planning issues in high-dimensional and complicated settings are well-suited for the efficient 

family of algorithms known as random sampling algorithms. By randomly sampling the environment, 

they investigate viable paths without incurring the substantial computing cost associated with standard 

grid approaches. The fundamental principle of random sampling algorithms is to progressively get closer 

to the best route by means of the random point distribution. The probabilistic roadmap (PRM) and the 

quickly explored random tree (RRT) algorithm are two instances of sampling-based path planning 

methods. The fundamental principle of PRM is to create nodes in free space by random sampling, 

connect these nodes with a sparse network (roadmap), and then run a path search across the graph to 

identify a workable route that leads from the starting point to the destination. It works well in complex 

static surroundings and high-dimensional spaces. The RRT-Connect approach was introduced by 

Kuffner et al. [19] in 2000 for single query path planning. It may be utilized for interactive performance 

assessment and does not require parameter change or preprocessing. In order to tackle difficult 

geometric path planning issues, this method builds two RRT trees, investigates the initial and target 

spaces, and then uses a straightforward greedy strategy to proceed. It is especially well-suited for quick 

searches in high-dimensional space. The RRT technique can locate a feasible path very rapidly, but it 

cannot ensure that the path found is the best option. Karaman et al. [20] proposed a new algorithm based 

on RRT*, which ensures asymptotic optimality while maintaining the computationally feasible solution 

and computational complexity characteristics of the standard RRT algorithm. The algorithm has the 

characteristic of asymptotically converging to the optimal path. A novel path planning technique called 

Informed RRT* was presented by Gammell et al. [21]. It directly samples a subset of solutions that can 
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be improved, increasing both the final solution's quality and speed of convergence. The completeness 

and optimality guarantees of RRT* are maintained by informed RRT*, but it is less dependent on the 

state dimension and the size of the planning challenge. 

3.  Conclusions 

In the context of today's rapid technological development, autonomous vehicles, as the core of intelligent 

transportation systems and smart cities, have attracted widespread attention from the global scientific 

research community and the automotive manufacturing industry. The key to autonomous driving 

technology lies in precise vehicle control and path tracking to ensure driving safety and efficiency. This 

article presents the fundamentals of five popular algorithms for autonomous driving trajectory planning, 

along with the benefits and drawbacks of each application. Trajectory planning for autonomous driving 

will advance in the future in a more intelligent, adaptable, and secure manner; it will also enhance system 

performance through cutting-edge techniques and creative thinking, and it will encourage the broad use 

and popularization of autonomous driving technology. In addition to increasing driving efficiency and 

safety, this will also facilitate better traffic flow, lessen its negative effects on the environment, and 

provide the groundwork for the creation of future intelligent transportation systems. 
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