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Abstract. With the significant progress of deep learning technology in many fields, the 

dependence of model training on a large amount of labeled data is increasingly prominent. 

However, in many practical application scenarios, especially in tasks with high labeling costs, 

data scarcity often occurs. This realistic challenge has promoted the rise of Few-Shot Learning 

(FSL) technology, which seeks to achieve effective learning of models with extremely limited 

samples. This article provides a comprehensive overview of the theoretical background, key 

technologies of FSL, to explore its potential and effectiveness in solving the problem of small-

sample learning. In the method overview section, this article pays special attention to FSL 

strategies based on data augmentation and transfer learning. By reviewing and analyzing these 

methods, this article aims to provide some theoretical support and technical references for further 

exploration in this field and hopes to contribute to solving the problem of data scarcity and 

promote the sustainable development of this field. 

Keywords: Data enhancement, Transfer learning, Supervised contrast learning, self-supervised 

learning. 

1.  Introduction 

Considering the quick development of deep learning and artificial intelligence, the improvement of 

model performance depends on a large number of high-quality labeled data. In practical applications, 

the cost of data acquisition and labeling can be extremely high, especially in certain fields (such as 

medical image analysis, rare disease diagnosis, industrial testing, etc.), where the number of labeled 

samples is very limited. At this time, the concept of Few-Shot Learning (FSL) came into being. FSL 

aims to achieve effective learning and generalization of the model through a very small number of 

training samples, even one or several samples, to maintain good performance in the environment of 

sample scarcity [1, 2]. 

The emergence of FSL brings new challenges and opportunities for the development of deep learning. 

Different from traditional deep learning models, FSL models can extract useful features and achieve 

task objectives in the case of scarce samples through transfer learning, meta-learning, and data 

enhancement. Its core goal is to improve the generalization ability of the model so that it can still have 

good classification, prediction, or recognition ability in the case of very small amounts of data. 

FSL technology has a wide range of application prospects, especially in areas where data collection 

is difficult and labeling costs are high. In medical image analysis, FSL can be applied to the diagnosis 

of rare diseases, as these cases often lack sufficient training samples. In addition, in emerging fields such 
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as virtual assistants and automatic customer service systems, FSL can greatly reduce the amount of data 

required for training, thus accelerating the development and application of the system. 

This paper reviews FSL from the perspective of data enhancement and transfer learning methods. 

First of all, data enhancement helps the model learn effectively in the case of scarce samples by 

expanding the diversity of the original data set. This paper will discuss in detail several common data 

enhancement methods, including image enhancement, adversarial generative network (GAN), and other 

cutting-edge technologies, as well as their applications and effects in FSL. 

At the same time, transfer learning, as an important part of FSL, can improve the model's learning 

ability in new tasks through knowledge transfer. This paper discusses the FSL method based on transfer 

learning and introduces how to improve the efficiency of FSL by transferring the parameter or feature 

representation of the pre-trained model. 

Through the multi-angle analysis of FSL techniques based on data enhancement and transfer learning 

methods, this paper aims to provide a more comprehensive perspective and technical reference for 

researchers in this field and help the future model training and application scenario expansion under the 

environment of data scarcity. 

2.  Method of Few-Shot Learning 

The workflow of FSL is usually divided into two stages, namely the basis learning stage and the model 

training and optimization (Meta-Learning Phase). In the basic learning phase, the model learns an initial 

set of common features on a large-scale training set. The training data for this stage is not necessarily 

the same as the data for the target task, but there is a certain correlation. By learning these general basics, 

the model can be better adapted to the target task in the subsequent meta-learning phase. In the model 

training and optimization phase, once the representations of features are obtained, the model can be 

trained using these representations. Data enhancement and transfer learning are two important strategies 

for FSL. Data enhancement enhances the generalization ability of the model by artificially expanding 

the data set (such as rotation, flipping, scaling, and other image processing techniques) to increase the 

training sample of the model. Transfer learning is the process of transferring knowledge from a similar 

domain or task so that the model can learn on a new task with less data. 

2.1.  Data enhancement 

Lee et al. [3] proposed a method for data enhancement using supervised comparison. The learning task 

is divided into two stages, the pre-training stage and the FSL stage. In the pre-training phase, the authors 

used supervised contrastive learning. In the first stage, the model is pre-trained using supervised 

contrastive learning (SCL). The image to be input is preprocessed first, then the image is converted into 

normalized embedding by an encoder network, and the embedding is converted into low-dimensional 

embedding by attaching a projection network. The supervised contrast loss (TIM) is calculated by 

pulling the positive samples with the same label closer and pushing away the negative samples. The 

second step in the training process is to use a new classifier to refine the encoder network and reject the 

projection network. After pre-training with SCL, the model is fine-tuned through a small sample task, 

where only a small number of labeled samples are used. The SCL phase learns to represent the feature 

space used to initialize the model so that the model can be better generalized in the face of a small 

number of labeled samples. This method of pre-training by supervised contrast learning in the first stage 

and then fine-tuning effectively improves the efficiency of FSL while maintaining some accuracy on 

large data sets. In the small-sample task learning stage, the model uses the pre-training features obtained 

through supervised contrast learning (SSL) [4] in the first stage to quickly adapt to the new small-sample 

task. At this stage, the model is exposed to only a small number of new class samples (usually only a 

few images per class), which is consistent with the core goal of FSL. Through the first stage of training, 

the model has learned a good feature representation that can distinguish between categories. From there, 

the model is fine-tuned based on a small number of samples. Since the pre-training stage has made the 

model learn features with strong generalization ability, the model can quickly adapt to new small-sample 
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tasks with the help of these small samples, reduce the risk of overfitting, and achieve good results in 

classification tasks. 

When FSL is used for classification problems, a large number of labeled data sets are required, but 

these data sets are not necessarily available promptly. Donahue et al. [5] proposed an unsupervised [6] 

meta-learning algorithm. They used clustering methods to group unlabeled and unclassified data and 

unsupervised clustering methods to quickly generalize a small number of labeled samples to new tasks. 

Specifically, the authors treat the results of the clustering as pseudo-tags, and the resulting pseudo-tag 

sample set will be used to construct different tasks by various data enhancement methods. For example, 

samples can be transformed by random clipping, rotation, scaling, etc., and different support sets and 

query sets can be constructed to simulate the task structure in FSL. At the same time, the author proposes 

the CUMCA method, which is to enhance the data by clustering the samples. Specifically, the cluster 

embedding method is used to guarantee that each sample of one-time data comes from a different class, 

and to ensure that every sample with the same one-hot label originates from the same class between the 

inner and outer loops, the data improvement function is utilized. The advantage of CUMCA is that it 

generates pseudo-classes through clustering, making full use of unsupervised data so that the model can 

be trained without real labels. By using the cross-task adaptation mechanism of meta-learning, the model 

can learn and generalize more quickly on new tasks. CUMCA provides an effective unsupervised meta-

learning approach that utilizes clustering and cross-task adaptation to improve generalization 

performance in FSL.  

Yao et al. [7], in their study of low-lens natural language understanding (NLU), found that most 

previous enhancement methods only brought marginal gains, and in many cases, the use of data 

enhancement resulted in erratic performance and even failure mode. So his team came up with FlipDA, 

an efficient and effective data enhancement approach specifically for FSL scenarios. The core idea of 

FlipDA is to generate new samples using simple image flipping operations (horizontal flipping, vertical 

flipping, and two-way flipping) and further enhance the model's perception of flip types through self-

supervised learning tasks. FlipDA also adds a flip classification task that asks the model to recognize 

the flip type of the image during training. FlipDA was evaluated on 8 tasks using 2 pre-trained models. 

Experimental results show that the proposed method significantly improves the accuracy of learning 

tasks and proves its effectiveness in FSL. Compared with other complex data enhancement methods, 

FlipDA can achieve performance improvement through simple operations and has the advantages of low 

computational overhead and easy implementation. The application of data enhancement in FSL is not 

limited to traditional geometric transformation or color adjustment, and enhancement methods such as 

FlipDA show that by combining self-supervised tasks, a model can further improve its ability to 

represent small sample data. Future data enhancement studies can continue to explore the direction of 

automatically searching optimization enhancement strategies by combining generative adversarial 

networks (GANs) [8] and other generative models, to provide more flexible and effective solutions for 

FSL. 

2.2.  Transfer learning 

Transfer learning [9, 10] is also a commonly used method when faced with a small sample set. Applying 

the information gained from one work (the target task) to another similar but distinct task is the goal. 

Unlike traditional machine learning methods, transfer learning does not require training the model on 

the target task from scratch, but instead uses the knowledge already learned on the source task, thereby 

improving the learning efficiency and performance of the model, especially when the training data for 

the target task is limited. 

In 2020, Yu et al. [11] proposed TransMatch, a scheme that combines transfer learning and semi-

supervised learning, aiming to solve the problem of FSL. TransMatch is trained on large data sets to 

learn common feature representations. These pre-trained feature representations are then transferred to 

the FSL task in the target task. This migration not only speeds up the learning process of the model but 

also reduces the dependence on the target task-labeled data. To further enhance the mode's functionality, 

TransMatch introduces semi-supervised learning, which uses unlabeled data in the target task for 
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training. The introduction of unlabeled data solves the problem of labeled data scarcity in tasks with 

small samples. The first step in TransMatch is to pre-train the feature extractor on the underlying class 

data. This component uses a lot of training data to learn common feature representations. The pre-trained 

feature extractor provides high-quality feature representations for new categories in subsequent small 

sample tasks, thus reducing the need for the model to label data for new categories. After the pre-training 

is complete, TransMatch will use the pre-trained feature extractor to initialize the classifier weights for 

the new class. Transfer learning reduces the risk of overfitting on small sample classes and ensures that 

models can effectively learn from limited new class data. The final component of TransMatch is to 

further update the model using semi-supervised learning methods to take advantage of unlabeled data. 

The model's capacity to adjust to new categories is improved through semi-supervised learning; in 

particular, the model's classification performance and generalization ability are improved by fully 

utilizing unlabeled input. 

Medina et al. [9] proposed a transfer learning framework that combines self-supervised learning and 

prototype networks, aiming to improve the accuracy and generalization ability of small-sample 

classification. The core of this method consists of two parts, Self-Supervised Contrastive Learning, and 

Prototypical Networks, which are used together to improve feature learning and classification 

performance in small-sample classification tasks. To obtain a rich visual representation, the authors first 

apply unsupervised meta-learning and self-supervised contrastive learning to a large amount of 

unlabeled data. In this process, model learning brings together positive sample pairs (different enhanced 

views of the same image) while pulling away negative sample pairs (enhanced views of different 

images). In this way, through the self-supervised learning phase, the model can learn more generalized 

representations. After the pre-training of self-supervised learning, the model is transferred to the FSL 

task. The transfer learning is combined with the prototype network, and the features obtained by the pre-

training are used for classification. At the same time, they extended the prototype nearest neighbor 

classifier ProtoNet. ProtoNet works by taking the average feature representation of each class of samples 

as a prototype for that class and classifying new samples according to the distance between them. This 

method enables FSL to have a strong classification ability even when each type of sample is very limited. 

The experimental findings demonstrate that in numerous small sample classification problems, the 

suggested approach outperforms the current mainstream methods. Especially in the case of very few 

samples (only 1 to 5 samples per class), the model can better perform classification tasks by transferring 

self-supervised pre-trained features and showing strong cross-task generalization ability. 

3.  Existing limitations and prospects 

Despite its numerous obstacles, FSL is a popular area of study in the field of artificial intelligence due 

to its enormous application potential and research opportunities. The main goal of FSL is to learn and 

generalize from a very small amount of data, but the generalization ability of FSL models is often limited 

in practical applications. Even after training on a large number of related tasks, the model may still have 

overfitting problems when faced with new tasks, especially when there are large differences between 

tasks. Current FSL techniques rely more on transfer learning on similar tasks, so the performance of 

models is significantly reduced when dealing with situations that vary widely across domains or tasks. 

Data enhancement This enhancement method based on manual rules can only increase the diversity of 

samples to a certain extent and is mostly limited to low-level features (such as geometric transformations 

in images). For higher-level semantic features, such as complex scenes or sentence structure in natural 

language processing, traditional enhancement methods have limited effectiveness. In addition, 

generative models such as GANs can generate new samples, but the generated samples are often easily 

constrained by training data, resulting in low quality or lack of diversity of the generated samples. 

Especially in a small sample environment, the training of GAN may be unstable, which will affect the 

overall performance of FSL. While the goal of FSL is to achieve efficient learning with a small amount 

of data, the models that achieve this are often very complex, involving a lot of task training and model 

fine-tuning. 
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Although FSL faces many challenges, its huge application potential and research prospects make it 

still a hot research direction in the field of artificial intelligence. Future research and technological 

developments are expected to overcome existing limitations and push FSL to achieve breakthroughs in 

more fields. In the future, FSL needs stronger cross-domain generalization ability to adapt to scenarios 

with large differences between tasks. This requires the development of more general learning methods 

that allow models to transfer knowledge more efficiently across domains. One potential direction is 

Adaptive Learning, which enables models to dynamically adjust their learning strategies according to 

the characteristics of new tasks. In addition, exploring Cross-Domain Meta-Learning will also be an 

important way to improve the generalization ability of FSL. At the same time, future data enhancement 

methods need to go beyond the traditional geometric transformation and the extension of low-level 

features to deeper semantic features at higher levels. By enhancing the semantic information, the model 

can obtain richer feature representation on fewer samples. For example, in the field of image, the 

enhancement method can simulate the pose and scene structure of the object, while in the field of natural 

language processing, data enhancement can be realized by syntactic structure, semantic substitution, and 

other technologies. Improving the computational efficiency of the FSL model will also be an important 

research direction in the future. 

4.  Conclusions 

This paper reviews FSL from the perspective of data enhancement and transfer learning, focusing on 

the limitations and prospects of these two methods and the existing FSL methods. In terms of limitations, 

although transfer learning can make use of large-scale pre-trained models, the transfer effect is often not 

ideal in the case of large differences between tasks, and the model is difficult to generalize. Most of the 

existing data enhancement methods rely on low-level geometric transformation, which cannot 

effectively extend high-level semantic features, and limit the performance of models in complex scenes. 

In addition, generative models such as GANs are also prone to instability in the case of small samples, 

which affects the quality of enhanced samples. The research direction of FSL will aim to overcome these 

limitations. Smarter high-level semantic data enhancement methods will be key, with models learning 

richer features from less data through enhanced semantic understanding. At the same time, transfer 

learning methods will also continue to evolve, especially in cross-domain and cross-task environments, 

enabling more efficient knowledge transfer. In addition, improving the stability of generative models 

such as GANs and meta-learning strategies that combine self-supervised learning and contrast learning 

will also improve the effectiveness of FSL. Through these innovations, FSL is expected to achieve 

breakthroughs in more complex application scenarios. 
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