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Abstract. Modular traditional autonomous driving and end-to-end autonomous driving have 

their own characteristics and play an important role in different scenarios in autonomous driving. 

The comprehensive performance of these two methods is compared and evaluated systematically 

in this paper. Modularity Traditional autonomous driving achieves high controllability and 

interpretability by breaking the system into multiple independent functional modules. However, 

the efficiency of information transfer between modules is low, and local optimal problems may 

occur when dealing with complex scenes. The end-to-end autonomous driving system realizes 
direct mapping from perception to control through deep learning, showing strong global 

optimization capabilities and the potential to deal with complex scenarios, but also faces black 

box problems and dependence on a large number of labeled data. This paper discusses the 

advantages and disadvantages of these two methods in practical applications, and suggests 

possible future research directions, including the integration of modular and end-to-end methods, 

improving the interpretability and security of the system, and improving data efficiency and 

system generalization. Taken together, modular traditional autonomous driving and end-to-end 

autonomous driving can achieve a safer and more efficient autonomous driving system by 

combining their respective advantages. 

Keywords: End-to-end, autonomous vehicles, decision control, trajectory planning. 

1.  Introduction 

According to the data of the World Health Organization, the global death toll caused by traffic accidents 

continues to rise every year [1,2], with about 1.35 million people die from road traffic accidents, about 

3,700 deaths every day, and the mortality rate per thousand vehicles reaches 6.4[3]. This grim situation 
forces countries to seek effective solutions to deal with the deteriorating traffic safety situation.  

In this context, autonomous driving technology has attracted much attention as a potential solution. 

By utilizing advanced sensors, computer vision and artificial intelligence technologies, autonomous 
driving technology enables vehicles to drive autonomously without human intervention, greatly 

improving traffic safety and the ease of travel. Automatic driving technology can not only effectively 
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reduce the incidence of traffic accidents [4], reduce casualties and property losses, but also provide 

people with a safer and more convenient travel experience [5].  

The end-to-end approach plays a key role in autonomous driving technology, especially when dealing 
with complex traffic scenarios. Liu Guoqing et al. optimized the automatic emergency braking system 

(AEB) by improving the Honda model and improved safety and driving comfort [6]. Cui Shihai et al. 

studied the impact of AEB system on the head injury of children in buses and found that the system 
could significantly reduce the injury risk of children during emergency braking [7]. The lane change 

model proposed by Zhen et al has realized more comfortable and safe lane change operation by 

considering human driving behavior [8]. The dynamic coordinated control strategy proposed by 

LanieAbi et al can effectively reduce vehicle trajectory errors when road conditions are inconsistent [9]. 
In addition, multi-sensor fusion technology has also been enhanced with the support of an end-to-end 

approach, although challenges remain. End-to-end methods based on deep learning, such as DDPG 

algorithm, have been successfully applied to automatic lane change tasks, enabling vehicles to safely 
and efficiently complete lane change operations in complex traffic scenarios [10,11]. These studies show 

that the end-to-end approach is widely used in trajectory planning and decision control of autonomous 

vehicles, and also shows significant advantages in complex scenarios. However, although the end-to-
end method has great potential in theory, it still faces many challenges in practical application. 

 This review aims at providing a comprehensive analysis of the current advancements, challenges, 

and future directions in vehicle trajectory planning and decision control, focusing on both end-to-end 

and traditional rule-based approaches. Firstly, through literature research, this paper collect research 
papers using end-to-end and rule-based methods in the field of vehicle trajectory planning and decision 

control in recent years, focusing on deep learning, reinforcement learning and other technologies. Then, 

different methods are classified according to their application scenarios and algorithm architectures, and 
their performance in different complex scenarios is compared. Then, by selecting typical application 

cases, this paper analyze in depth the different effects of the end-to-end approach and the traditional 

rule-based approach in solving specific problems. This paper will comprehensively evaluate the 

advantages and disadvantages of end-to-end approach and rule-based approach in complex scenarios, 
and propose possible directions for future research. Finally, a systematic review and analysis of vehicle 

trajectory planning and decision control technology based on end-to-end approach is carried out to 

provide guidance for future research and exploration of safer and more efficient transportation modes. 

2.  Modular approach 

The modular approach divides the automatic driving system into different modules to solve different 

tasks, such as perception, pedestrian detection, lane following, etc. [12]. Traditional autonomous driving 
technology may rely heavily on high-precision maps, and this dependence may limit its flexibility and 

adaptability in practical applications. In contrast, end-to-end technology is more flexible and can directly 

map perceptual information to steering commands for autonomous driving [13]. However, despite the 

great potential in this field, there are still many challenges and unanswered questions, including 
multimodality, interpretability, causal confusion, robustness, and world models [14]. The following 

categories will be based on the application of the modular approach to specific complex scenarios, 

including urban traffic scenarios, highway scenarios, and so on. 

2.1.  Urban traffic scenes 

Modular systems can have good effects in some complex scenarios, such as road conditions with 

multiple traffic lights, pedestrian crossings and roundabouts. Kunz F et al developed a modular, robust 
and sense-independent environment sensing system [15]. The article describes a modified Mercedes E-

Class experimental car, which is equipped with a variety of sensors including lidar, monochrome 

cameras and radar, covering a wide range of perception in front and back of the vehicle. The system 

uses the classical occupancy grid mapping method to estimate the occupancy state of each grid unit 
through detailed grid division of the environment, and uses the maximum stable extreme value region 

(MSER) feature for positioning, and realizes the high precision vehicle self-positioning through particle 
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filters. The paper also details the design of the behavior layer, which is responsible for generating the 

vehicle's target state and driving strategy, such as maintaining the target speed, following the vehicle 

ahead, or stopping at a specific location, and the trajectory planning module, which is based on optimal 
control theory, generates a smooth and comfortable driving trajectory and adjusts when encountering 

obstacles or kinematic constraints. 

Extensive testing of the system on public roads near Ulm University, including traffic lights, 
pedestrian crossings and roundabouts, demonstrated the robustness and reliability of the system in 

complex traffic environments. 

Under adverse environmental conditions such as sunset, darkness or rainy days, the system performs 

well in a single scene, mainly due to its robust design of multi-sensor fusion, but there is still a weak 
problem in the interaction of diverse complex scenes. 

2.2.  Highway Scene 

The modular system remains safe and reliable at high vehicle speeds. Ardelt et, al., presents a 
probabilistic framework for highly automated driving on highways and explores its application in real 

traffic in detail [16]. The system features fully automatic lane change (LC) and does not require driver 

approval. In this paper, a fully integrated probabilistic model is proposed to optimize driving strategies 
and decision-making processes by considering measurement uncertainties in the whole driving process. 

The main goal of the research is to achieve 100% autonomous driving on the A9 motorway (Munich-

Ingolstadt) without the need for driver intervention. The system is based on the fusion of data from 

multiple sensors, such as lidar, radar and cameras, combined with high-precision digital maps, to provide 
an all-round perception of the vehicle's environment. The paper emphasizes that through the modular 

system architecture, it can be more flexible for development and expansion. The driving strategy module 

makes decisions through a multi-level decision tree structure to determine the best driving behavior. 

 

Figure 1. Automatic lane change operation on the highway 

In the experimental part, the system was evaluated on public roads and closed test sites. The test 
shows that the system can safely and reliably conduct automatic driving under high-speed driving and 

complex traffic conditions, especially automatic lane change operation (Shown on Fig.1). 

2.3.  Advantages and disadvantages of modular autonomous driving method 
Advantages: 

(i)Task decomposition and team collaboration: Complex tasks are decomposed into multiple 

independent subtasks, which enables the engineering team to focus on the optimization of each subtask. 

(ii)System predictability: With clear input and output definitions and deterministic rules between 
modules, the modular system behaves relatively predictably within its known capabilities, enhancing 

the stability and reliability of the system. 

(iii)Interpretability: The explanation of system behavior becomes easier. When an error or 
unexpected behavior occurs, intermediate results between modules can be traced to locate the root cause 

of the problem and improve the debugging efficiency of the system. 

Disadvantages: 
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(i)Lack of global optimality: Since the input and output of each module are predefined, in some cases 

these fixed inputs and outputs may not be optimal. For example, different road and traffic conditions 

may require consideration of different information extracted from the environment, and modular 
systems often struggle to respond flexibly to these changes. 

(ii)Information loss and uncertainty processing: Information transfer between modules may be 

missing certain details or uncertainties. 
(iii)Difficulties in covering scenes: Detailed systems are needed to deal with complex scenarios. In 

addition, certain long-tail cases are difficult to cover comprehensively, resulting in systems that may 

perform poorly in the face of rare situations. 

(iv)Waste of resources: The resolution of some sub-problems can become unnecessarily complex 
and resource-intensive. For example, the perception module may attempt to detect all objects, when in 

fact the detection of some objects has little impact on the decision, resulting in wasted resources and 

extended computation time. 
The modular autonomous driving approach improves the predictability and interpretability of the 

system through task decomposition and module independence, but also brings challenges such as lack 

of global optimality, loss of information, and difficulty in covering complex scenarios. 

3.  End to end approach 

End-to-end autonomous driving is a deep learning-based approach for training autonomous driving 

systems. Traditional autonomous driving systems typically consist of multiple modules, such as 

perception, prediction, planning, and control. These modules need to be designed and optimized 
separately and then put together sequentially to complete the autonomous driving task. The end-to-end 

approach is different in that it attempts to establish a single end-to-end mapping directly from input (e.g., 

sensor data) to output (e.g., vehicle control instructions), that is, mapping the original input to the final 
output without explicitly defining or designing intermediate steps [17]. 

3.1.  End-to-end application in urban road conditions 

With the continuous deepening of the research in the field of automatic driving, the research has gone 

from a single constraint to a multi-constraint condition, and the urban road conditions are complicated, 
automatic driving can not only from the route and signal light constraints and other simple 

considerations, but also include more information on the road, which is not only complex, but also 

dynamic. 
Zhihui Guo et al. put forward a kind of urban driving algorithm based on hierarchical conditions to 

mimic - Hierarchical Conditional Imitation In the end-to-end method proposed in this paper, although it 

is only necessary to input roadside buildings, pedestrians, signal light information, navigation 
information and other information to the input terminal, deep learning will lead to problems such as 

reduced decision-making effect and cost of computing resources as the complexity of task input 

increases and parameters increase. In order to solve these problems, the idea of simplifying complexity 

is adopted in this paper. HCIL uses an end-to-end approach to reduce manual processing and subsequent 
processing, thereby giving the system more room for automatic control. The vehicle sensor obtains the 

environment and vehicle information, and controls the vehicle vertically and horizontally after 

processing [18]. Feature networks such as Resnet image feature extraction network, speed feature 
mapping network and global planning navigation instructions are used to extract image feature, vehicle 

speed feature and navigation command feature respectively. Information is passed to sub-tasks of the 

lower layer through decision-making of the upper layer network and speed-assisted tasks, so as to decide 
which distance task the vehicle will perform. 

In order to solve the problems such as difficulty in feature extraction and unstable output of 

traditional end-to-end methods in dynamic interaction scenarios, [19] is proposed based on a figure 

convolution imitative learning network (GCN) and conditions (CIL) end-to-end automated driving lane 
changing method. Specifically, the dynamic information in the driving scene is represented in the form 

of a graph structure, and GCN is used to efficiently aggregate these information to generate driving 
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instructions that the self-driving car should take. These commands are then used as high-level commands 

for the CIL, combined with other perceptual data, and ultimately mapped to specific vehicle control 

actions to enable collision-free autonomous lane changes in complex environments. GCN represents 
each vehicle in the dynamic driving scene as a node in the graph structure, and effectively aggregates 

the interactive information between vehicles by connecting the self-driving node and the surrounding 

vehicle nodes, and generates the driving behavior instructions of the self-driving vehicle. CIL uses a 
branch structure, with each branch learning a different driving task (such as going straight, changing 

lanes left, and changing lanes right) to reduce cumulative error and more accurately reflect the 

differences between driving actions. The experiment was verified on CARLA simulation platform, and 

the results show that the proposed method is significantly superior to the traditional end-to-end method 
in terms of success rate, collision rate and the accuracy of lane change selection, especially in complex 

dynamic scenes. In addition, this paper also compare and analyze the traditional IL, IL using GCN and 

traditional CIL, which further proves the effectiveness and superiority of the proposed method in dealing 
with dynamic interactive environment. 

3.2.  End-to-end application in blind areas of visual field 

End-to-end approach can be used to deal with dangerous driving environments through special methods, 
such as in the process of driving, the driver and the vehicle often encounter the problem of blind field 

of vision, in recent years with the continuous progress of technology, these problems can be solved 

through some methods.   

Cui Jiaxun et al. proposed that the blind spot information is utilized to avoid traffic accidents through 
inter-vehicle communication, and an end-to-end learning framework is proposed to improve decision 

making using LiDAR data shared between vehicles to enhance autonomous driving in hazardous or 

emergency situations [20]. Fig.2 by using an end-to-end learning model called “COOPERNAUT”, 
which mainly uses cross-vehicle perception for vision-based cooperative driving. Experiments were 

conducted on the AUTOCASTSIM platform, then using time-to-completion (SCT) and SCT ratios as 

measures of success, comparing the COOPERNAUT model to both non-V2V-communicating and V2V-

communicating driving baselines, and finally evaluating the various V2V approaches in a fair manner, 
using the same neighbor selection process. The final experimental results show that the COOPERNAUT 

model has a 40% higher average success rate in handling complex traffic situations and reduces the 

required bandwidth requirement by a factor of five compared to the traditional self-driving model. In 
multiple repeated runs COOPERNAUT model shows lower collision rate and higher average success 

rate and also achieves 5.10Mbps communication throughput without data compression so 

COOPERNAUT performs better in dealing with the constraints as compared to the traditional single-
vehicle sensing system. 

Y. Ma et al. point out that vision-centered Bird 's eye View (BEV) perception provides an intuitive 

way to represent the world, which is helpful to reduce the blind area of visual field, because the BEV 

perspective can provide a broader and unobstructed view of the environment [21].The vision method is 
not only limited to single sensor data, but also can effectively integrate with the data of other sensors 

such as radar, lidar, etc., to further improve the ability to capture and process information in the blind 

area. The paper details the rapid progress that deep learning has made in advancing BEV perception in 
recent years, including several new approaches to solving the BEV perception challenge. These methods 

can train neural networks to extract features from image data and then build a more complete 

environment model, effectively reducing blind areas. 
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Figure 2. Using communication to obtain information of blind spot 

Although the current results have certain limitations, with the development of future technologies, it 

is believed that the problem of visual blind areas can be well solved. 

3.3.  End-to-end application in extreme weather 
In extreme weather, the original sensing system of the vehicle may fail. At this time, some special 

methods can be uesd to perceive the surrounding information of the vehicle. 

Rivera Velázquez JM, et al. focuses on exploring the performance of thermal imaging sensors in 
extreme haze conditions, especially for autonomous driving applications [22]. The aim is to explore the 

operational limits of thermal imaging technology in harsh conditions and whether thermal imaging 

cameras can provide reliable target detection capabilities under haze conditions. Two approaches to test 
scenarios, static and dynamic, were utilized. Firstly, thermal targets of different temperatures were used 

in the static test to evaluate the contrast and visibility changes of the thermal imaging camera under 

different haze concentrations. Secondly, in the dynamic test, a real-world scenario is simulated to test 

the detection capability under extreme haze by moving electric cars and pedestrians then the operational 
limits of the thermal imaging camera are investigated by analyzing the camera's field of view (AOV), 

target temperature, distance, and haze intensity (MOR). The results show that under extreme haze 

conditions, thermal imaging cameras with 18° and 30° field of view are able to reliably detect 
pedestrians at a meteorological optical distance (MOR) of 13 meters with a detection rate of 90%. The 

field of view of the camera and the intensity of the haze have a significant effect on the detection 

capability, and a narrower field of view can maintain a higher detection rate at a lower MOR. 

In addition to thermal imaging technology, the application of deep learning-driven radar processing 
technology to actual autonomous driving systems can also effectively deal with perception problems in 

extreme weather. 

As pointed out by Z. Chen and X. Huang, radar performs particularly well in bad weather, such as 
rain, fog, sandstorms, etc., because they can penetrate these obstacles and provide accurate information 

about the surrounding environment [23].Radar not only measures the distance of an object, but also its 

radial velocity at the same time, which is crucial for obstacle avoidance and path planning in autonomous 
driving. The importance of different radar signal representations, such as point cloud and spectrogram, 

in deep learning models is emphasized. These representations help models understand and utilize radar 

data better. It also discusses a variety of deep learning models for autonomous driving tasks such as 

detection and classification, which can be trained to recognize and understand key information in radar 
signals. The technology mainly combines the multi-sensor fusion model of radar signals and camera 

images, which can provide a more comprehensive and robust environment perception, especially in 

extreme weather, when the camera may be severely affected, radar data can be an important supplement. 
Radar and camera have their advantages and disadvantages, radar performs better in bad weather, while 

camera can provide rich visual information when the light is good. 

In conclusion, these two special sensing technologies are not yet fully popular for use in extreme 
environmental conditions, but it is optimistic that they can be improved and applied in all aspects in the 

future. 
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3.4.  Advantages and disadvantages of end-to-end autonomous driving 

Advantages:   

(i)Simple structure: By mapping raw sensor data directly to the control signal, the system architecture 
is simplified, reducing the complex feature engineering and sensor fusion required in a modular 

approach. This makes the development and integration process more intuitive and efficient. 

(ii)Self-optimization: The model is trained on large amounts of data, optimizing itself to achieve 
maximum overall performance. There is no need to manually define rules or intermediate 

representations, and the model can be automatically adjusted according to different driving scenarios, 

which improves the robustness of the system. 

(iii)Handle complex interactions: It deals more effectively with complex interactions between the 
vehicle and the environment by learning global information in the environment directly, without having 

to process the information layer by layer through predefined modules. 

(iv)Data-driven improvements: As the system handles more driving scenarios, the end-to-end model 
has the potential to continuously improve its performance by being data-driven, reducing the reliance 

on human intervention. 

Disadvantages: 
(i)Complexity of sensor fusion: Since end-to-end systems rely on data from multiple sensors to make 

decisions, it is a challenge to effectively fuse sensor data with these different characteristics. 

(ii)Visual abstraction and presentation design challenges: The end-to-end approach relies on visual 

abstraction, but how to design an effective intermediate representation remains a challenge. 
(iii)Complexity of the world model: In a complex and dynamic driving environment, it is difficult to 

accurately predict key details in the raw image space. 

(iv)Difficulties with multitasking learning: Rely on multi-tasking learning (MTL) to share knowledge 
and improve generalization. However, how to choose the best task combination and adjust the weight 

of the loss function is a complex problem, and the sparse supervisory signal also increases the difficulty 

of extracting useful information. 

(v)Lack of interpretability: End-to-end models are often seen as "black boxes" that make it difficult 
to explain the decisions they make or trace the sources of errors. This uninterpretability challenges both 

the debugging and public acceptance of the system. Although attention mechanisms and saliency maps 

can provide some clues, their validity and fidelity remain to be verified [24]. 
Overall, the end-to-end approach to autonomous driving improves system performance and 

flexibility through simplified architecture and self-optimization, but also faces significant challenges in 

sensor fusion, presentation design, interpretability, and more. 

4.  Discussion 

In the development of autonomous driving technology, modular traditional autonomous driving and 

end-to-end autonomous driving represent two distinct methodologies. Both of them have their 

advantages and disadvantages in system architecture, computing requirements, performance 
optimization and interpretability, which are worthy of further discussion. 

4.1.  Comparison between end-to-end and modular futures 

(i)Structure comparison: The end-to-end approach simplifies the system architecture by mapping raw 
sensor data directly to the control signal, reducing the complex feature engineering and sensor fusion 

required in the modular approach. 

(ii)System predictability comparison: Because of clear input and output definitions and deterministic 
rules between modules, modular systems behave relatively predictably within their known capabilities. 

However, the performance of the end-to-end model based reinforcement learning is limited in the highly 

dynamic environment, and it is difficult to accurately predict key details in the original image space. 

(iii)Adaptability comparison: Different road and traffic conditions may require consideration of 
different information extracted from the environment, and modular systems often struggle to respond 

flexibly to these changes. In the end-to-end approach, the model is trained based on a large amount of 
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data, without manually defining rules or intermediate representations, and the model can be 

automatically adjusted according to different driving scenarios. 

(iv)Interpretability comparison: When errors or unexpected behaviors occur in modular design, 
intermediate results between modules can be tracked to locate the root cause of the problem, thus 

improving the debugging efficiency of the system. End-to-end models are often seen as "black boxes" 

that make it difficult to explain the decisions they make or trace the sources of errors. 

4.2.  Analysis and comparison of end-to-end and modular advantages and disadvantages 

Modular Traditional autonomous driving system builds a highly structured architecture by separating 

functional modules, and its advantages lie in the independence and replaceable of modules, which 

facilitates the debugging, optimization and troubleshooting of the system. However, this modular design 
also brings the limitations of reduced information transfer efficiency, limited system performance, and 

local optimal decision. 

In contrast, end-to-end autonomous driving takes a more holistic approach, enabling direct mapping 
from sensor input to control output through techniques such as deep learning. The main advantages of 

this approach are its potential global optimization capabilities and faster response times to better deal 

with complex driving environments. Although end-to-end autonomous driving also faces the challenges 
of poor interpretability, large training data requirements, and difficulty in dealing with extremely rare 

scenarios, its global optimization and rapid response capabilities make it a clear advantage in handling 

variable scenarios and making optimal driving decisions. 

4.3.  Comprehensive evaluation and future development direction 
Modular and end-to-end autonomous driving each have their own unique advantages and limitations. 

From the current development situation, the modular approach is still dominant in many commercial 

autonomous driving systems because of its better controllability and interpretability. Especially in 
scenarios where gradual transition and validation is required, a modular approach provides a more robust 

path. 

However, as deep learning technology continues to advance and data-driven approaches continue to 

improve, end-to-end autonomous driving shows great potential, especially in its ability to handle 
complex, dynamic scenarios. Therefore, the future direction of development may not be the complete 

replacement of one of the two, but through the integration of the two, combining the modular 

controllability and the global optimization capabilities of the end-to-end approach to build safer and 
more efficient autonomous driving systems. 

This integration can include adopting a modular design on the overall framework, but introducing an 

end-to-end learning approach in individual key modules such as perception or decision making, or 
leveraging data generated by the end-to-end system to enhance the performance of the modular system. 

Either way, the goal is to improve the system's decision-making ability and response speed in complex 

environments while ensuring its safety and interpretability. 

5.  Conclusion 

This paper aims to compare and evaluate the combined performance of modular and end-to-end 

autonomous driving systems. The modular approach, which subdivides the autonomous driving system 

into independent modules such as perception, positioning, planning and control, provides a highly 
structured solution with the advantages of controllability and interpretability, but faces the problem of 

low efficiency of information transfer between modules and local optimization. In contrast, end-to-end 

autonomous driving systems utilize deep learning to achieve direct mapping of perceived control, 
demonstrating global optimization capabilities and the potential to handle complex scenarios, but their 

characteristics and high requirements for training data pose challenges to the safety and interpretability 

of the system. 

In addition, the modular traditional automatic driving system has good maintainability and 
interpretability, which is suitable for the scenario of gradual development and verification, but its main 
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limitation is that the coupling between modules may restrict the system performance, and it may not 

achieve global optimization when dealing with complex scenarios. The end-to-end autonomous driving 

system, by mapping directly from sensor data to control commands, shows strong global optimization 
capabilities and adaptability to complex scenarios, but its dependence on large amounts of labeled data 

makes the safety and reliability of the system face challenges. And future research should focus on the 

integration of modularity and end-to-end, and explore the possibility of combining modular design with 
end-to-end learning methods to improve the decision-making ability of the system in complex 

environments. At the same time, the research on how to improve the interpretability of the end-to-end 

system should be continued, ensure its security in practical applications, and improve the training 

method of the end-to-end system, reduce the dependence on many labeled data, and improve the 
performance of the system in special scenarios. 
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