
 

 

Research on Deep Learning Models for Traffic Flow 

Prediction 

Xuanchen Guo 

School of Electronic Engineering and Optoelectronic Technology, Nanjing University 

of science and technology, Nanjing, China 

calmgxc@gmail.com 

Abstract. The issue of urban traffic congestion is becoming increasingly severe, highlighting 

the need for accurate traffic flow prediction to facilitate effective traffic management. Traditional 

prediction methods often struggle to address the complex spatiotemporal dependencies and 

external factors inherent in traffic data. This paper reviews existing deep learning models applied 

to traffic flow prediction, categorizing them into spatial and temporal types based on their 

dependencies. Spatial dependency models include those based on Euclidean space, such as CNN-

based models, and non-Euclidean space models that combine Graph Convolutional Networks 

(GCN) with attention mechanism. These models effectively capture spatial variations in traffic 

flow data. Temporal dependency models, such as Recurrent Neural Network (RNN) and 

Temporal Graph Convolutional Network (T-GCN), focus on capturing long-term dependencies 

and time series dynamics. The selection of models depends on specific tasks and data 

characteristics. The article concludes with a summary and outlook on the entire discussion. 
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1.  Introduction 

With the acceleration of urbanization and population growth, traffic congestion has become increasingly 

severe. Intelligent Transportation System is an indispensable part of smart city, and traffic flow 
prediction is an essential component of Intelligent Transportation System. Accurate traffic flow 

prediction is crucial for alleviating congestion, optimizing route planning, and guiding vehicle dispatch 

[1]. Traditional statistical methods and machine learning techniques, such as linear regression, decision 

trees, and support vector machines, often require extensive feature engineering and parameter tuning, 
making it difficult to effectively handle the complex spatio-temporal dependencies and external factors 

affecting traffic data [2]. In recent years, deep learning technology has made significant progress in the 

field of traffic flow prediction due to its powerful feature extraction and pattern recognition capabilities. 
By learning the features and complex patterns in the data, deep learning models can capture non-linear 

relationships and dynamic changes in time series, achieving more accurate predictions. However, 

existing deep learning models also have certain limitations. Most models require a large amount of data 
to achieve good performance, and the computational complexity of these models is relatively high. 

Despite the extensive research on the application tasks of traffic flow prediction in existing literature, 

there is a notable absence of in-depth analysis in the summarization and categorization of related content. 

Furthermore, the analysis of the advantages and disadvantages of these models is insufficient. This 
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deficiency hinders a comprehensive understanding of the real-world performance and limitations of 

different models. 

This paper provides an overview of deep learning models for traffic flow prediction. It begins by 
classifying the tasks and common data representations. We then introduce and compare various models, 

including CNNs, GCNs, RNNs, attention mechanisms, and hybrid models, highlighting their advantages 

and disadvantages. Suggestions for improvement and optimization are provided for each model's 
limitations. The paper concludes by discussing the challenges and future research directions in the field.  

2.  Traffic flow prediction preparation 

2.1.  Task 

In traffic flow prediction, there are many aspects involved in application tasks [3], which are as follows: 
Firstly, predict the number of vehicles passing through a specific road segment within a unit of time 

based on historical traffic flow data. Secondly, pay attention to the real-time speed of vehicles, which is 

usually derived from vehicle sensor data or camera data. Then, forecast the travel demand volume in a 
certain area at a future time step based on historical travel data. It is also necessary to predict potential 

traffic incidents, such as traffic congestion and accidents. There are various external information factors 

that interfere with the prediction of actual traffic data, such as weather changes, points of interest, 
holidays, etc., so considering the impact of external information is crucial. Finally, based on the above 

predictive analysis, optimize route selection to provide the best solution for travelers (Figure 1). 

 

Figure 1. Flow chart of the application task of traffic prediction [3] 

2.2.  Data 

Table1 shows the common data representation forms. 

Table 1. Common data representation forms 

Data Type Description Characteristics 

Time 
Series 

Data 

A sequence of data points 

arranged in chronological order, 

such as speed, volume, and 
occupancy. 

Continuity: Reflects the continuous changes in data 

over time. 

Periodicity: Traffic flow exhibits clear periodic 
patterns. 

Trend: Long-term trends are evident. 

Seasonality: Specific time periods have a 

significant impact. 
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Image 

Data 

A two-dimensional array of 

pixels, with each pixel 

containing information such as 

color and brightness. 

Intuitiveness: Directly displays road conditions and 

vehicle distribution. 
Multi-dimensionality: Each pixel contains multiple 

features (e.g., RGB values). 

Real-time Monitoring: Enables real-time 

monitoring through camera data. 
Complexity: Requires complex algorithms and 

techniques for processing. 

Graph 
Data 

Uses nodes and edges to 

represent relationships between 
entities, such as road network 

structure and vehicle routes. 

Structural: Clearly represents the topological 
structure of road networks. 

Connectivity: Captures the interdependencies 

between nodes. 
Dynamics: Reflects the position changes of 

vehicles at different time points.<br>Flexibility: 

Can be extended to include additional attributes, 

such as road capacity and speed limits. 

 

Paper [4] provided sources of traffic data acquisition, and mainly focused on traditional machine 

learning methods (Figure 2). 

 

Figure 2. An example of a Traffic Network Graph [4] 

In response to a series of application tasks and data processing in traffic flow prediction, deep 

learning methods can better meet the requirements. Therefore, through continuous exploration and 
improvement, a multitude of models based on deep learning have been developed. The following 

diagram is a general classification framework (Figure 3). 

Table 1. (continued). 
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Figure 3. Mind map for classification of deep learning models in traffic flow prediction [3] 

Next, we will provide a detailed explanation of each fundamental deep learning method, introduce 

their basic principles, analyze their respective advantages and limitations, propose some related 
optimization strategies, and offer prospects for the future. 

3.  Model analysis and evaluation 

3.1.  Spatial dependency model 

3.1.1.  Euclidean space Based on Euclidean space, a spatial-dependent CNN [5] model is commonly 

used. The core idea is to convert traffic flow data into a two-dimensional matrix and utilize the 

convolutional and pooling layers of CNN to extract spatial features from the traffic flow data, such as 

the correlation of flow between adjacent observation points. Subsequently, the fully connected layers 
integrate the extracted features and output the final prediction results. This model is capable of 

effectively capturing the spatial variation patterns in traffic flow data, thereby enhancing the accuracy 

of traffic flow predictions. 

 

Figure 4. Schematic structure of the CNN [6] 

In paper [6], a short-term traffic flow prediction model based on a CNN deep learning framework 

for spatial analysis is described. Figure 4 shows a simplified framework of CNN. It demonstrates the 
complete process from traffic flow matrix to predicted results. First, the data enters the first convolution 

layer, followed by the pooling layer, then the second convolution layer and another pooling layer. Finally, 

this information goes through the fully connected layer to produce the predicted results. The article 

employs a model that combines CNN with STFSA (Spatial-Temporal Feature Selection Algorithm), and 
the results indicate that this model achieved the highest prediction accuracy in both single-step and 

multi-step prediction tasks. Firstly, CNN effectively extracts spatiotemporal features from traffic data, 

learning nonlinear patterns for precise predictions. Moreover, the paper employs methods such as L2 
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regularization and batch processing to prevent model overfitting and to enhance the model's 

generalization capabilities.  

Certainly, the spatial-dependent CNN model has its limitations. The model primarily focuses on the 
spatial features of traffic flow data, neglecting temporal correlations. For instance, it may fail to capture 

the flow variations during peak and off-peak periods. The model assumes that the traffic network is a 

Euclidean space. However, in real-world traffic networks, the distance between traffic observation 
points may be influenced by factors such as terrain, road network structure, and cannot be simply 

measured by Euclidean distance. The model is also sensitive to outliers. Sudden events like traffic 

congestion, accidents, or other emergencies can lead to abnormal fluctuations in traffic flow data. 

Paper [7] proposes a multi-feature prediction model based on CNN, named MF-CNN. It combines 
multiple spatiotemporal features and external factors, making the analysis more comprehensive and the 

prediction more accurate. In the paper, traffic flow data from 8 adjacent time intervals are used as the 

input for short-term features, and traffic flow data from 7 consecutive days and 2 consecutive weeks are 
used as the input for long-term features, considering various spatiotemporal features. The JPEA dataset 

is used to demonstrate the impact of weather and holidays as external factors on traffic flow. The MF-

CNN model adopts an end-to-end learning structure, integrating feature extraction, feature fusion, and 
prediction output into a single model, simplifying the training and prediction process. 

3.1.2.  Non-euclidean space Based on non-Euclidean space, a method that typically combines spatial 

dependency GCN [8] with attention mechanisms is adopted. The principle lies in simulating the spatial 

dependency relationships in traffic networks through a graph structure, where GCN propagates 
information between nodes on the graph, using an adjacency matrix to weight and aggregate node 

features, thereby capturing the interactions between nodes in irregular traffic networks. The Attention 

mechanism [9], on the other hand, calculates the correlation weights between nodes, dynamically 
emphasizing the spatial relationships that are more critical to the prediction results, allowing the model 

to focus on the more important connection paths in the traffic network. These two methods collectively 

demonstrate the capability of handling complex spatial dependencies in non-Euclidean spaces, free from 

the limitations of traditional Euclidean distances, and can better adapt to the diversity and irregularity 
of actual traffic networks. 

In paper [10], a deep learning model called ASTGCN is proposed, which integrates GCN and 

attention mechanisms for traffic flow prediction (Figure 5). ASTGCN combines multi-source data to 
capture spatio-temporal patterns using graph convolution and attention, followed by a fully connected 

layer for refinement. Experiments on two real-world highway datasets show that ASTGCN outperforms 

existing benchmark models in prediction accuracy. GCN captures spatial relationships, while the 
attention mechanism dynamically adjusts node weights, effectively capturing dynamic spatio-temporal 

correlations. Additionally, ASTGCN extracts features directly from raw data, simplifying the training 

process and reducing human-induced errors. The attention matrix provides an intuitive understanding 

of each sensor's influence on the prediction results. 
Certainly, the ASTGCN model has its shortcomings. The model includes multiple hyperparameters 

such as the order of Chebyshev polynomials and the size of convolutional kernels. The selection of these 

hyperparameters can make the model overly sensitive to their values. The computational complexity of 
GCN and the attention mechanism is high, leading to longer training and prediction times, especially in 

large-scale traffic networks. Lastly, when the connections between nodes in the traffic network are 

sparse, the information that GCN can obtain from each node is limited, which affects performance. 
Therefore, this model is not suitable for handling sparse data. 
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Figure 5. The framework of ASTGCN. SAtt: Spatial Attention; TAtt: Temporal Attention GCN: Graph 

Convolution; Conv: Convolution; FC: Fully-connected; ST block: SpatialTemporal block [10]. 

To address the sparsity of spatial dependencies, we can adopt the STGNN (Spatial Temporal Graph 

Neural Network) model introduced in paper [11] for processing. The positional attention mechanism in 

STGNN can dynamically adjust the importance of neighboring nodes based on node features, effectively 
capturing complex relationships between nodes even in sparse data. Furthermore, STGNN can 

automatically adapt to the structural features of sparse data through the learning process, enabling better 

learning of the intrinsic features of the data and thus avoiding overfitting. 

3.2.  Temporal dependency model 

Deep learning methods based on temporal dependency primarily focus on the dynamic relationships 

between different time points in time series data, thereby capturing the patterns of traffic flow variation 
over time. These methods mainly include CNN, RNN, GCN, and Attention mechanisms. 

CNN extracts local features from time series data, such as periodicity and trends, through 

convolutional layers and pooling layers. Convolutional layers use learnable convolutional kernels to 

slide over the time dimension, performing a weighted sum of data from adjacent time points to extract 
local features. Pooling layers then reduce the dimensionality of the features extracted by the 

convolutional layers while retaining the most important information. 

RNN [12] captures the long-term dependencies in time series data by taking the output from the 
previous time point as input to the current time point through recurrent units. These units typically 

contain a hidden state that stores information from past time points. The principle of GCN is to capture 

the spatial dependencies between nodes through a graph structure, but it can also be extended to temporal 
dependencies. T-GCN introduces the time dimension into the graph convolution process, using time 

convolutional layers or time encoders to capture the trend of node features changing over time. Attention 

mechanism can dynamically adjust the weights of relevance between different elements in a sequence, 

focusing on elements that have a greater impact on the prediction results. It helps the model capture key 
information in time series data and improves prediction accuracy. 

In addition, these methods can also be used in combination, and their selection should be based on 

their respective characteristics and advantages, as well as the specific application scenarios and task 
requirements. 
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Figure 6. The overall process of spatio-temporal prediction. The right part represents the specific 

architecture of a T-GCN unit, and GC represents graph convolution [13]. 

In paper [13], the application of the T-GCN model in traffic prediction is specifically described. By 
combining GCN and GRU(a variant of RNN), the model is designed to capture spatial and temporal 

dependencies, respectively. Figure 6 shows the overall process of the T-GCN model described in a 

previous paper you sent me. The model processes input data Xt, Xt−1, and Xt−2 through a series of T-

GCN Cells, each containing a graph convolution layer and a gated recurrent unit. These cells 

sequentially receive hidden states ℎt−2, ℎt−1from the previous time step and the current input data, and 

after processing, output new hidden states ℎt as well as prediction values Yt, Yt+1, and Yt+2. In addition, 

the bottom right corner of the picture enlarges the specific structure of a TGCN cell, including steps 
such as input merging, graph convolution operations, and state updates.Experiments conducted on two 

real-world traffic datasets (SZ-taxi and Los-loop) show that the T-GCN model outperforms other 

baseline methods in terms of prediction accuracy. 

The T-GCN model achieved a reduction in RMSE of 30.62% and 30.32% for 15-minute and 30-
minute traffic prediction tasks, respectively, compared to the GCN model that only considers spatial 

features. It also reduced RMSE by 1.82% and 3.12% compared to the GRU model that only considers 

temporal features. This demonstrates the significant advantage of the T-GCN model in capturing both 
temporal and spatial dependencies simultaneously. The paper presents the trends of RMSE and 

Accuracy for the T-GCN model across different prediction time horizons, showing that its prediction 

results are relatively stable, indicating its suitability for long-term traffic prediction.Furthermore, a 

perturbation analysis experiment was conducted by adding Gaussian noise and Poisson noise to the 
dataset. The results show that the T-GCN model's prediction accuracy changes little, indicating strong 

robustness to noise interference. 

However, the T-GCN model performs poorly in predicting local extreme, such as peak traffic during 
rush hours. This may be due to the smoothing filter of the GCN model, which can smooth out the peaks. 

The paper also mentions that the "zero taxi value" phenomenon may lead to the misjudgment of non-

zero road segments as zero in the traffic feature matrix, thus affecting the prediction accuracy of the T-
GCN model. Moreover, the paper does not provide detailed information on the training and prediction 

time of the T-GCN model. Nevertheless, based on its model structure and complexity, it can be inferred 

that the computational cost is likely to be high, which may make it less suitable for scenarios with limited 

resources. 
Paper [14] presents the Long Short-Term Memory (LSTM) [15], a model based on RNN. Its 

characteristic is the ability to capture long-term dependencies in time series and effectively learn 

nonlinear features in traffic flow. This enables LSTM to have a certain capability to predict local extrema, 
compensating to some extent for the shortcomings of T-GCN. Moreover, compared to T-GCN, the 

model structure of LSTM is simpler, the training process is relatively easy, and the computational 

efficiency is relatively higher. 
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4.  Experimental comparative analysis 

Based on the experimental data of each model on different datasets in the table 2, the following 

comparative analysis is conducted: 
Among the models based on Euclidean space, the MAPE of CNN+STFSA is relatively small. This 

is because the CNN part can effectively extract spatial features from traffic flow data, while STFSA can 

help the model capture the dynamic changes of time series, which contributes to maintaining a lower 
relative error overall. However, its MAE is relatively large, which may be due to the model's sensitivity 

to outliers and its suboptimal performance in handling extreme values or noise in the data. On the other 

hand, MF-CNN significantly outperforms CNN+STFSA in terms of both MAE and RMSE. It considers 

both short-term and long-term features of the data, and this multi-scale feature fusion can more 
comprehensively capture the changing patterns of traffic flow. More importantly, it takes into account 

the interference of various external factors such as weather, holidays, and points of interest, which can 

all affect the prediction results. 

Table 2. Comparison of prediction results among different deep learning models 

Category Model Dataset MAE RMSE MAPE(%) 

Euclidean Space CNN+STFSA WSDOT 13.34 / 5.76 

 MF-CNN JEPA 0.0096 0.015 13.27 

Non-Euclidean Space ASTGCN PeMSD4 21.80 32.82 / 

  PeMSD8 16.63 25.27 / 

 STGNN METR-LA 2.62 4.99 6.55 

  PEMS-BAY 1.17 2.43 2.34 

Temporal Dependency T-GCN SZ-taxi 2.71 3.92 / 

  Los-loop 3.18 5.13 / 

 LSTM NN SHM 18.13 26.65 / 

 

In the models based on non-Euclidean space, it can be observed that the indicators of STGNN are 
significantly lower than those of ASTGCN. This is likely because GCN is not suitable for processing 

sparse data. When the connectivity between nodes in the traffic network is sparse, the performance of 

GCN is affected. However, in STGNN, the importance of neighboring nodes can be dynamically 
adjusted based on their features, allowing it to effectively capture complex relationships between nodes 

even in sparse data. 

In terms of temporal dependency models, T-GCN shows significantly better prediction performance 

than LSTM. T-GCN combines GCN and GRU, enabling it to capture both spatial and temporal 
dependencies, making it suitable for long-term traffic prediction and providing a more comprehensive 

overall performance. LSTM can capture long-term dependencies in time series, making it suitable for 

predicting local extrema and complementing the shortcomings of T-GCN. However, it is not as 
comprehensive as T-GCN. 

5.  Conclusion 

This study reviews the application of deep learning models in traffic flow prediction, categorizing them 
into spatial dependence models and temporal dependence models based on their dependencies. Spatial 

dependence models are further divided into Euclidean and non-Euclidean types, with representative 

models from each category introduced along with their advantages and disadvantages.The analysis 

indicates that CNNs are suitable for handling data based on Euclidean space, significantly improving 
prediction accuracy by integrating multiple spatiotemporal features. The combination of GCNs and 

attention mechanisms effectively addresses data in non-Euclidean spaces by capturing spatial 

relationships between nodes in the traffic network and dynamically adjusting the weights between nodes. 
In cases of sparse connectivity, STGNNs can be employed, utilizing a positional attention mechanism 

to dynamically adjust the importance of neighboring nodes. For temporally dependent data, T-GCNs 
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can simultaneously capture both spatial and temporal dependencies, while LSTMs can be employed to 

predict peak traffic flows, compensating for the limitations of T-GCNs. 

Despite the significant progress made by deep learning models in traffic flow prediction, several 
challenges and future research directions remain. Firstly, there is a need to improve data quality and 

quantity, as well as to develop more effective methods for handling missing values, outliers, and noise. 

Secondly, the computational cost of some deep learning models, such as T-GCN, can be high, making 
them unsuitable for resource-constrained scenarios; hence, there is a demand for the development of 

lighter models that are more efficient. Thirdly, integrating multiple data sources, including traffic flow, 

weather, and road information, can greatly benefit traffic flow predictions, and thus, there is an urgent 

need to explore more effective multi-source data fusion techniques to enhance prediction accuracy. 
Lastly, the black-box nature of deep learning models makes it difficult to understand the prediction 

results, calling for the creation of more transparent models that allow for better insight into the prediction 

process and the influencing factors. 
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