
A Brief Analysis of the Progress and Trends in Software
Defect Prediction Methods

Ruxi Jia1,a,*

1School of Computer Science and Technology, Zhejiang University of Technology, No. 18,

Chaowang Road, Gongshu District, Hangzhou City, Zhejiang Province, China

a. jiaruxi@zjut.edu.cn

*corresponding author

Abstract: Software defect detection is particularly important for modern society, as it is a

crucial step in ensuring the quality and reliability of software systems. With the emergence

of artificial intelligence (AI), research in software defect detection has evolved from

traditional methods to more complex approaches that utilize deep learning and large language

models (LLMs). The advent of LLMs has fundamentally changed the paradigm of software

development and defect detection, bringing new challenges and confusion to the field of

software defect prediction research. To address these issues, we compare software defect

detection methods based on traditional techniques, deep learning approaches, and LLMs

through a literature review. We analyze the changes brought about by the introduction of

LLMs to software development and propose new insights. Additionally, we examine the

progress and trends in software defect prediction to provide inspiration for subsequent

research.

Keywords: Software Defect Prediction, Machine Learning, Deep Learning, Large Language

Model.

1. Introduction

Software now plays a crucial role in various fields such as national economy, defense, government

affairs, and daily life. The performance and complexity of these systems largely depend on their

stability. Defects in software may be potential causes of system failures, crashes, and even equipment

damage and personnel injuries. However, with the development of software technology, no inspection

or verification method can detect and eliminate all defects. Although software does not wear out, it

may malfunction or fail at any time due to reasons that are difficult to detect. Ensuring software

quality is crucial and costly in the development of high reliability software systems. As software

systems play an increasingly important role in our daily lives, their complexity is also constantly

increasing [1]. Therefore, software defect detection is particularly important for modern society. It is

a crucial step in ensuring the quality and reliability of software systems. In the 1970s, the use of

statistical learning techniques emerged to predict the number and types of defects in software systems

based on historical data, along with software measurement data such as discovered defects. Defect

prediction technology has played a vital role in improving and ensuring software quality and has also

significantly promoted the development of software engineering technology since the 1970s.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

134

Taking cross projects software defect detection as an example, we first searched for papers related

to the review topic in important academic search engines [2]. Then, we filtered out papers unrelated

to the review topic by systematically analyzing the relevant content and supplemented the missed

papers by analyzing the relevant job descriptions of the selected papers. The final number of relevant

papers published from 2002 to 2016 is shown in Figure Ⅰ.

Figure 1: Statistics on the cumulative number of published papers each year.

Figure 1 shows that the number of published papers was relatively low before 2011, while since

2012, the number of related papers has shown a polynomial growth trend. The academic community's

attention to software defect detection has increased since 2012.

Software defect prediction techniques have generally been divided into two types: static and

dynamic defect prediction techniques. Static prediction technology refers to the technique of

predicting the number or distribution of defects based on defect-related measurement data. Dynamic

technology predicts the distribution of system defects over time based on the timing of defect or

failure occurrences. With the emergence of AI, the field of software defect detection has evolved

from traditional methods to more complex approaches that utilize deep learning and LLMs. For

example, Li et al. introduced VulDeePecker, a deep learning system for vulnerability detection that

processes code snippets and employs bidirectional LSTM to address gradient issues and dependencies.

It achieved an F1 score of 90.5, outperforming traditional detection methods and reducing false

positives[3]. Xu et al.’s “Contextual LSTM” integrates CNN for local feature extraction with RNN

for sequential dependency analysis, achieving superior F1 scores over individual CNN and LSTM

models on the Sard dataset [4].

The rise of large-scale language models has changed the mode of software development and defect

detection, while bringing new challenges and uncertainties to the research of software defect

prediction. However, there is currently a lack of systematic analysis in this area. To address this

problem, we conduct a literature review, comparing and contrasting software defect detection

methods based on traditional approaches, deep learning techniques, and LLMs. This review delves

into the transformative impact of LLMs on software development processes and defect detection

0

10

20

30

40

50

60

2002 2004 2008 2009 2010 2011 2012 2013 2014 2015 2016

Number of papers

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

135

methods. By examining historical processes and current trends, we aim to clarify the advantages and

limitations of each method.

In addition, we discuss the impact of large language model integration on software defect

prediction, emphasizing the shift in research focus and the necessity of new strategies to address

emerging complexities. The analysis presented in this study lays the foundation for future empirical

verification and provides insights into the direction of software defect prediction research. It also

helps guide practitioners and researchers in selecting and developing more effective defect detection

tools.

2. Literature Review of Software Defect Prediction

2.1. Classical Software Defect Prediction Methods

Since the 1970s, statistical learning methods have emerged, utilizing historical records and software

metrics (such as identified defects) to predict the total number and classification of defects in software

systems. Defect prediction technology aims to assess whether a software system is ready for delivery.

This technology tallies the number of confirmed defects in the system and estimates the number of

potential defects that may not have been discovered yet. Defect prediction technology plays a crucial

role in improving software quality and ensuring its reliability, while also driving significant

development in the field of software engineering. In the early stages of software development, defect

detection mainly relied on manual labor, including code reviews, design, and execution of test cases.

Although this method was time-consuming and labor-intensive, it was the only option available at

the time.

Since the 1970s, software defect prediction techniques have generally been divided into two types:

static defect detection techniques and dynamic time-based software defect prediction techniques. The

development of static defect prediction technology has a long history, initially focusing on defect

prediction based on metrics such as software size. In order to predict the possible number of defects

in software, researchers are committed to studying the relationship between defects and basic

characteristics such as software size and complexity. In the early 1990s, people began to realize that

defects in software were not uniformly or completely randomly distributed. It promoted the

development of prediction techniques for defect distribution characteristics. Moreover, the

introduction and removal of defects at different stages of the software development lifecycle

significantly impact residual defects. Corresponding software defect prediction models have achieved

remarkable results in practice[5].

Another crucial defect prediction technique is based on temporal relationships. Many dynamic

reliability models adopt this type of prediction method. This area of research focuses on uncovering

the distribution patterns of software defects over time during the software lifecycle or in specific

phases through empirical studies and statistical methods. Dynamic testing identifies defects by

executing the software, monitoring its behavior, simulating real-world usage environments, and

detecting issues that are difficult to uncover through static analysis.

2.2. Software Defect Prediction Method Based on Deep Learning

In research on defect detection for large and complex software systems, it is commonly believed that

most defect-related information can be gleaned through in-depth analysis of the code. Therefore, the

ability to analyze code data is of great significance for how to efficiently detect software defects.

Machine learning methods, especially those based on big data analysis, can identify and learn patterns

from large amounts of data. Although early defect detection research primarily relied on machine

learning techniques, these methods exhibit significant shortcomings in efficiency and accuracy. Most

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

136

machine learning approaches depend on features manually crafted by experts, and their performance

is limited by the quality of feature engineering.

With the remarkable success of deep neural networks have achieved great success in technologies

such as image recognition and natural language processing, some researchers have begun to explore

their application in source code defect detection. For example, S. Sivapurnima et al. developed an

efficient adaptive deep learning model (ADLM) for the automatic detection and classification of

duplicate error reports. In the preprocessing stage, data is collected from online systems. Useless

information is removed through text cleaning, data type conversion, and null value replacement,

encompassing stop word removal and stem extraction. Four types of feature extraction methods,

namely context, classification, time, and text features, are adopted. After independently generating

the LSTM and CRF models during the model construction phase, the LSTM is integrated into the

CRF structure. Although CRF can independently utilize features for decision-making, classification

may need to be improved due to solid dependencies on the output. LSTM, with its advantage of

processing time series information, updates the hidden layer of CRF through its gating mechanism

(including the forget gate, input gate, output gate, and memory unit), thus enhancing the model

performance. Meanwhile, the characteristics of the Dingo Optimizer mathematical model are utilized

to select the optimal weight parameters in CRF-LSTM. Compared with existing methods for this

purpose, it demonstrates high accuracy[6]. Preliminary results indicate that deep learning exhibits

advantages in defect detection that traditional methods and early machine learning approaches do not

possess[7]. Moreover, there is considerable potential for further research in this field.

2.3. Software Defect Prediction Method Based on Large Language Model

The Large Language Model (LLM), taking ChatGPT as an example, has attracted great interest from

the computational and data science communities due to its wide range of applications and powerful

performance. Its significant effectiveness in understanding natural language and generating

meaningful content has sparked interest in various disciplines, including software engineering.

Therefore, after the proposal of the LLM, some researchers began to carry out software defect

detection based on it. For example, X. Wang et al. proposed a novel framework based on a Large

Language Model for software defect detection[8]. I t leveraged the pre-trained CodeT5+ and (IA)3

for parameter-efficient software defect detection. S. Hossain et al. demonstrated their success in APR

technology based on the framework Toggle proposed by the LLM, establishing a new benchmark test

for CodeXGLUE code optimizations[9]. It demonstrated significant performance on multiple datasets,

including Defects4J.

The LLM has shown significant potential in the field of software development. It enables tasks

such as code generation, program defect repair, code documentation, and the creation of test cases[10].

In the process of automating program debugging and repair, fault localization technology plays a

crucial role and has become a highlight in the release of ChatGPT-4[11].

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

137

3. Comparative Analysis

3.1. Comparison Analysis of the Traditional Software Defect Prediction Methods

Table 1: Comparison Analysis of the Traditional Software Defect Prediction Methods.

Software Defect

Prediction
Authors Year Techniques

Usage

Scenario
Weakness

Static

Software

Defect

Prediction

Defect

Prediction

Model

S. Chulani et

al[12]
1999

COQUALMO

model

Used in the

planning phase

Static Software Defect

Prediction

M. Fagan[13] 1999 DRE model

Suitable for

stable life

cycle and

process models

Reliable defect

classification and matrix

methods are needed to

map to the source and

discovery of defects

N. Fenton et

al[14]
2007

Bayesian

model

Used in

scenarios

lacking defect

data and

requiring risk

analysis

Needs expert experience

and judgment.

L. Briand et

al[15]
2000

Capture-

recapture

model

Determine
whether re-

inspection of

the software

product is

necessary

Requires stringent

assumptions.

Defect

Distribution

Prediction

T,

Khoshgoftaar

et al [16]

2000

Classification

technology,

Regression

technology

Applying to

make planning

and testing

Cannot well balancing

Type I and Type II

misclassifications

Metric-

Based

technology

T,

Khoshgoftaar

et al[17]

2006

Size-Based,

Complexity-

Based
Used in

planning. The
required data

size,

complexity,

coupling

degree, etc.

The density of faults

during operation may not

be accurately predicted

by the defect density of
the module; In order to

maintain consistency

between different

systems, it is necessary to

calibrate the model and

assumptions.

P. Li et al[18] 2005
Process metric-

based

V. Basili et

al[19]
1996

OO metric-

based, Web

metric-based

Dynamic Defect
Prediction Technology

Rayleigh

model

Need historical

defect density

data and

continuously

track defect

counts

Unable to adjust based on

changes in products,

personnel, platforms, or

projects that may affect

defect prediction.

A. Goel et
al[20]

1979
Exponential
model

Applying to
the formal

testing phase

Testing effort is
homogeneous.

K.

Trivedi[21]
1984

S-curves

arrival

distribution

models

Excellent

adaptation to

large software

projects with

numerous

defects

More complicated than

the above two models.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

138

The comparative analysis of traditional software defect prediction methods is presented in Table 1. It

indicates that the selected papers were predominantly published in the late 20th and early 21st

centuries. Moreover, the time span between these publications is relatively extensive. Traditional

software defect detection methods have undergone extensive development and have been thoroughly

researched and discussed in the academic community. For example, M. Fagan introduced the DRE

model, which is suitable for cyclic and process models with stable lifetimes[13]. Furthermore, the

DRE model examines the characteristics of diverse project stages and processes and maps defects

onto corresponding stages and process segments. For instance, syntax and logic errors that might

emerge during the encoding stage can be mapped within the DRE model, thereby facilitating a more

precise location of the defect source. It formulates a relatively standardized defect handling process

framework, incorporating defect classification and mapping methods. Subsequent research can

extend and optimize this framework, offering a reference and a basis for developing more appropriate

defect prediction models for various project types. L. Briand et al. proposed a capture-recapture model,

which is used to determine whether software products need to be rechecked [15]. It is based on the

capture-recapture principle in biology. Considering the distinct characteristics between software

inspection and animal capture in biology, such as the varying abilities of different inspectors (time

response factor) and the diverse probabilities of defect detection (heterogeneity factor) in software

inspection, a model incorporating multiple sources of variation is established. For instance, four

models are formulated: MO (with no variation), Mh (considering only heterogeneity variation), Mt

(considering only time response variation), and Mth (considering both time response and

heterogeneity variations). These models possess different assumptions regarding the detection

probabilities of inspectors and defects, thereby being more congruent with the actual circumstances

of software inspection. Simultaneously, the "virtual inspection" method systematically investigates

the impacts of the number of inspectors and the total number of defects on model performance. The

systematic variations of these two factors within appropriate ranges are analyzed. Ultimately, based

on a comprehensive assessment of the accuracy, bias, and variability of different models and

estimators under diverse conditions, recommendations for model selection are put forward for

different numbers of inspectors and defects. This model is typically applied during software

development's planning and formal testing stages, particularly in environments lacking defect data,

where risk analysis is required and large projects are handled. This method is also crucial for retesting

decisions and relies on historical defect data for continuous improvement.

Although traditional defect detection methods have a long history, their inherent patterns are

inevitably flawed. Traditional static analysis methods typically rely on manually defining defect

patterns. As software and defect complexity increase, the cost and difficulty of manual definition

become prohibitively high. Additionally, the rates of false positives and false negatives may undergo

significant changes due to subjective differences in human understanding. In dynamic analysis

methods, the automatic generation and variation of test cases introduce significant uncertainty. These

factors may lead to testing redundancy, unclear testing attack surfaces, difficulties in discovering

access control vulnerabilities, and design logic errors. Therefore, although these early defect detection

methods have achieved certain results in detecting defects in small software, they often cannot meet

the requirements when faced with large, complex software systems and diverse new types of defects.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

139

3.2. Comparison Analysis of Different Software Defect Prediction Methods

Table 2: Comparison Analysis of Different Software Defect Prediction Methods.

Method Authors Year Techniques Advantages

Classical

Machine

Learning

Technology

N. Khleel

et al[22]
2021

A software bug prediction model

based on supervised machine

learning algorithms

In four publicly available

databases from NASA, the

model demonstrated higher

accuracy and efficiency in

identifying potential software

defects.

H. Perl et

al[23]
2015

VCCFinder, an approach to improve

code audits

Compared to the vulnerability

finder Flawfinder, VCCFinder

reduces the number of false

alarms by over 99% at the same

level of recall.

K.

Elish[24]
2008

SVM is a supervised learning

algorithm. It can be used for

classification and regression

problems, and provide relatively

accurate prediction results.

To provide better prediction

results, different kernel

functions are used.

Simultaneously reducing

computing power requirements.

Deep Learning

Technology

A. Mishra

et al[25]
2024

A novel deep learning (DL)-based

CI/CD software defect prediction

technique

Compared with existing

methods, the proposed model

generates less label noise and

waiting time.

L. Qiao et

al[26]
2020

A deep learning-based model for

software defect prediction

This method significantly

reduces the mean squared error

by over 14% and increases the

squared correlation coefficient

by over 8%.

S. Wang

et al[27]
2016

DBN, an unsupervised probabilistic

deep learning algorithm

few restrictions on the labeled

dataset.

L.

Qiao[28]
2017

CNN is a deep learning architecture

that uses convolution operations in at

least one level to replace traditional

matrix multiplication.

It can detect important features

by default without manual

supervision.

Large

Language

Model

Technology

H. Shen

et al[29]
2023

A defect detection system based on

graph convolutional neural network.

It automatically extracts unique

features from the AST of the

program to explore the semantic and

structural information of the code.

The popular deep learning

methods on Java projects are not

as good as it in terms of AUC

and F1 metrics.

A. Briciu

et al[30]
2023

BERT-based language models for

the detection of defective source

codes

The CodeBERT MLM model

trained on source code is more

effective in detecting software

defects than models that focus

on natural language, such as

RoBERTa.

T. Le et

al[31]
2024

CodeBERT and ChatGPT

technologies for low-resource SV

prediction

The effectiveness research of

ChatGPT in low-resource SV

prediction has great prospects.

The comparison analysis of different software defect prediction methods is shown in Table 2. The

earliest paper was published in the early twenty-first century. This indicates that machine learning is

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

140

a technology with a long history of development. It has received extensive and in-depth research

within academia. As an important branch of machine learning, deep learning has rapidly developed

and been widely applied over the past decade. Software defect detection technology, with the help of

traditional machine learning and its derived deep learning algorithms, has achieved significant

improvements in accuracy, efficiency, and utilization of computing resources. These methods provide

effective tools for software quality assurance by reducing label noise and waiting time while

improving prediction accuracy and enabling automatic feature detection.

Traditional software defect detection techniques, such as static code analysis, dynamic execution

analysis, and manual inspection, often require a significant investment of human resources. However,

they may not be as efficient when dealing with complex, large-scale software systems. In contrast,

deep learning-based detection methods automatically extract features and recognize patterns from

vast amounts of data. These techniques are capable of handling more complex defect scenarios and

demonstrate superior generalization capabilities. By analyzing historical data from software projects,

deep learning models can predict potential future defects. The popularity of research using deep

learning for defect detection is continuously increasing [7].

Most selected deep learning and LLMs papers have been published within the past decade. The

rise of large-scale language models represented by ChatGPT has brought new research directions to

the academic community. Training traditional deep learning models relies on a large volume of

labeled data. In contrast, LLMs use unsupervised learning to self-train many unlabeled text data. For

example, H. Shen et al. proposed a defect detection framework based on graph convolutional neural

networks (GCN)[29]. GCN combines the characteristics of convolutional neural networks and graph

neural networks, extends the convolution operations to non-Euclidean space, conducts convolution

operations on graphs via Fourier transform principles, aggregates node information with edge

information to generate new node representations, and employs the GraphSAGE framework for

learning node representations. It integrates the code semantics and descriptive semantic features and,

after being processed by GraphSMOTE, constructs a model for prediction to capture the code

information comprehensively. This framework outperforms popular deep learning methods in

evaluation metrics such as AUC (Area Under the Curve) and F1 score. A. Briciu et al. proposed

BERT-based language models to detect defective source code [30]. It adopts feature extraction rather

than fine-tuning to obtain code embedding representations when utilizing pre-trained language

models. It selects RoBERTa and CodeBERT-MLM, two BERT-based models, to automatically learn

source code embeddings. It conducts a comparative study on the importance of features extracted

from natural language datasets and code-specific semantic and syntactic patterns pre-trained from

source code datasets for software defect prediction. This model demonstrates higher software defect

detection efficiency than models focusing on natural language processing. These models are not

confined to specific tasks like image recognition or speech processing. They generate coherent text

and are suitable for various applications, including chatbots and content creation. There are significant

differences between LLMs and traditional deep learning models regarding model structure, training

methods, and application areas. The emergence of LLMs has provided us with a new and powerful

tool for handling various complex tasks. Therefore, LLMs' research and application prospects in

software defect detection are extensive.

4. Conclusion

In summary, the critical role of software in systems has grown. It has become a key factor in cost and

risk, especially with the rise of complex systems. Defect prediction in software engineering is

essential and continually evolving. Large language models (LLMs) offer a new, more adaptable

approach to defect detection. LLMs enhance the accuracy of defect prediction.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

141

We compare traditional software defect detection methods, deep learning-based detection

techniques, and detection methods utilizing LLMs. We highlight LLMs’ significant impact on

software development. The open-source nature of LLMs like ChatGPT facilitates their integration

into existing processes, improving development efficiency. Despite their theoretical and practical

promise, further research is needed to address emerging challenges in this field.

References

[1] Z. Li, X. Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Softw., vol. 12, no. 3, pp.
161–175, 2018, doi: 10.1049/iet-sen.2017.0148.

[2] Chen, Xiang & Wang, L.-P & Gu, Q. & Wang, Z. & Ni, C. & Liu, W.-S & Wang, Q.-P. (2018). A Survey on Cross-

Project Software Defect Prediction Methods. Jisuanji Xuebao/Chinese Journal of Computers. 41. 254-274.

10.11897/SP.J.1016.2018.00254.

[3] Z. Li et al., “VulDeePecker: A Deep Learning-Based System for Vulnerability Detection,” 25th Annu. Netw. Distrib.

Syst. Secur. Symp. NDSS 2018, no. February, 2018, doi: 10.14722/ndss.2018.23158.

[4] I. Conference, “2018 5th International Conference on Systems and Informatics, ICSAI 2018,” 2018 5th Int. Conf.

Syst. Informatics, ICSAI 2018, no. Icsai, pp. 1225–1230, 2019.

[5] X. Chen, Q. Gu, W. S. Liu, S. L. Liu, and C. Ni, “Survey of static software defect prediction,” Ruan Jian Xue

Bao/Journal Softw., vol. 27, no. 1, pp. 1–25, 2016, doi: 10.13328/j.cnki.jos.004923.

[6] S. Sivapurnima and D. Manjula, “Adaptive Deep Learning Model for Software Bug Detection and Classification,”

Comput. Syst. Sci. Eng., vol. 45, no. 2, pp. 1233–1248, 2023, doi: 10.32604/csse.2023.025991.
[7] X. Deng, W. Ye, R. Xie, and S. K. Zhang, “Survey of Source Code Bug Detection Based on Deep Learning,” Ruan

Jian Xue Bao/Journal Softw., vol. 34, no. 2, pp. 625–654, 2023, doi: 10.13328/j.cnki.jos.006696.

[8] X. Wang, L. Lu, Z. Yang, Q. Tian, and H. Lin, “Parameter-Efficient Multi-classification Software Defect Detection

Method Based on Pre-trained LLMs,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.1007/s44196-024-

00551-3.

[9] S. B. Hossain et al., “A Deep Dive into Large Language Models for Automated Bug Localization and Repair,” Proc.

ACM Softw. Eng., vol. 1, no. FSE, pp. 1471–1493, 2024, doi: 10.1145/3660773.

[10] Q. Zhang et al., “A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT

and Automated Program Repair,” 2023, [Online]. Available: http://arxiv.org/abs/2310.08879

[11] Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y. Liu, “Large Language Models in Fault Localisation,”

vol. 1, no. 1, 2023, [Online]. Available: http://arxiv.org/abs/2308.15276
[12] S. Chulani and B. Boehm, “Modeling Software Defect Introduction and Removal: COQUALMO (COnstructive

QUALity MOdel),” USC-CSE Tech. Rep., no. August, pp. 99–510, 1999.

[13] M. E. Fagan, “Design and code inspections to reduce errors in program development,” IBM Syst. J., vol. 38, no. 2,

pp. 258–287, 1999, doi: 10.1147/sj.382.0258.

[14] N. Fenton et al., “Predicting software defects in varying development lifecycles using Bayesian nets,” Inf. Softw.

Technol., vol. 49, no. 1, pp. 32–43, 2007, doi: 10.1016/j.infsof.2006.09.001.

[15] L. C. Briand, K. El Emam, B. G. Freimut, and O. Laitenberger, “A comprehensive evaluation of capture-recapture

models for estimating software defect content,” IEEE Trans. Softw. Eng., vol. 26, no. 6, pp. 518–540, 2000, doi:

10.1109/32.852741.

[16] T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, “Balancing misclassification rates in classification-tree models of

software quality,” Empir. Softw. Eng., vol. 5, no. 4, pp. 313–330, 2000, doi: 10.1023/A:1009896203228.
[17] T. M. Khoshgoftaar, A. Herzberg, and N. Seliya, “Resource oriented selection of rule-based classification models:

An empirical case study,” Softw. Qual. J., vol. 14, no. 4, pp. 309–338, 2006, doi: 10.1007/s11219-006-0038-1.

[18] P. L. Li, J. Herbsleb, and M. Shaw, “Forecasting field defect rates using a combined time-based and metrics-based

approach: A case study of OpenBSD,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, vol. 2005, pp. 193–202, 2005,

doi: 10.1109/ISSRE.2005.19.

[19] V. R. Basili, L. C. Briand, W. L. Melo, and I. C. Society, “Tse1996-Basili-Validation of Oo Metrics,” IEEE Trans.

Softw. Eng., vol. 22, no. 10, 1996.

[20] A. L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate Model for Software Reliability and Other

Performance Measures,” IEEE Trans. Reliab., vol. R-28, no. 3, pp. 206–211, 1979, doi: 10.1109/TR.1979.5220566.

[21] K. S. Trivedi, R. M. Geist, and I. Trans, “S-shaped reliability growth modeling for software error de- Decomposition

in reliability analysis of fault-tolerant systems . Generalized preventive maintenance policies for a system Addendum

to : computing failure frequency via mixed products A multiple ,” vol. 48, p. 1984, 1984.
[22] N. A. A. Khleel and K. Nehez, “Comprehensive Study on Machine Learning Techniques for Software Bug Prediction,”

Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 8, pp. 726–735, 2021, doi: 10.14569/IJACSA.2021.0120884.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

142

[23] H. Perl et al., “VCCFinder: Finding potential vulnerabilities in open-source projects to assist code audits,” Proc.

ACM Conf. Comput. Commun. Secur., vol. 2015-Octob, pp. 426–437, 2015, doi: 10.1145/2810103.2813604.

[24] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using support vector machines,” J. Syst.

Softw., vol. 81, no. 5, pp. 649–660, 2008, doi: 10.1016/j.jss.2007.07.040.

[25] A. Mishra and A. Sharma, “Deep learning based continuous integration and continuous delivery software defect

prediction with effective optimization strategy,” Knowledge-Based Syst., vol. 296, no. January, p. 111835, 2024,

doi: 10.1016/j.knosys.2024.111835.

[26] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol. 385,

pp. 100–110, 2020, doi: 10.1016/j.neucom.2019.11.067.
[27] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” Proc. - Int. Conf.

Softw. Eng., vol. 14-22-May-, pp. 297–308, 2016, doi: 10.1145/2884781.2884804.

[28] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via convolutional neural network,” Proc. - 2017

IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS 2017, pp. 318–328, 2017, doi: 10.1109/QRS.2017.42.

[29] H. Shen, X. Ju, X. Chen, and G. Yang, “EDP-BGCNN: Effective Defect Prediction via BERT-based Graph

Convolutional Neural Network,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 2023-June, pp. 850–859, 2023, doi:

10.1109/COMPSAC57700.2023.00114.

[30] A. Briciu, G. Czibula, and M. Lupea, “A study on the relevance of semantic features extracted using BERT-based

language models for enhancing the performance of software defect classifiers,” Procedia Comput. Sci., vol. 225,

pp. 1601–1610, 2023, doi: 10.1016/j.procs.2023.10.149.

[31] T. H. M. Le, M. A. Babar, and T. H. Thai, “Software Vulnerability Prediction in Low-Resource Languages: An
Empirical Study of CodeBERT and ChatGPT,” ACM Int. Conf. Proceeding Ser., pp. 679–685, 2024, doi:

10.1145/3661167.3661281.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/99/20251769

143

