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Abstract: Software defect detection is particularly important for modern society, as it is a 

crucial step in ensuring the quality and reliability of software systems. With the emergence 

of artificial intelligence (AI), research in software defect detection has evolved from 

traditional methods to more complex approaches that utilize deep learning and large language 

models (LLMs). The advent of LLMs has fundamentally changed the paradigm of software 

development and defect detection, bringing new challenges and confusion to the field of 

software defect prediction research. To address these issues, we compare software defect 

detection methods based on traditional techniques, deep learning approaches, and LLMs 

through a literature review. We analyze the changes brought about by the introduction of 

LLMs to software development and propose new insights. Additionally, we examine the 

progress and trends in software defect prediction to provide inspiration for subsequent 

research. 

Keywords: Software Defect Prediction, Machine Learning, Deep Learning, Large Language 

Model. 

1. Introduction 

Software now plays a crucial role in various fields such as national economy, defense, government 

affairs, and daily life. The performance and complexity of these systems largely depend on their 

stability. Defects in software may be potential causes of system failures, crashes, and even equipment 

damage and personnel injuries. However, with the development of software technology, no inspection 

or verification method can detect and eliminate all defects. Although software does not wear out, it 

may malfunction or fail at any time due to reasons that are difficult to detect. Ensuring software 

quality is crucial and costly in the development of high reliability software systems. As software 

systems play an increasingly important role in our daily lives, their complexity is also constantly 

increasing [1]. Therefore, software defect detection is particularly important for modern society. It is 

a crucial step in ensuring the quality and reliability of software systems. In the 1970s, the use of 

statistical learning techniques emerged to predict the number and types of defects in software systems 

based on historical data, along with software measurement data such as discovered defects. Defect 

prediction technology has played a vital role in improving and ensuring software quality and has also 

significantly promoted the development of software engineering technology since the 1970s.  
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Taking cross projects software defect detection as an example, we first searched for papers related 

to the review topic in important academic search engines [2]. Then, we filtered out papers unrelated 

to the review topic by systematically analyzing the relevant content and supplemented the missed 

papers by analyzing the relevant job descriptions of the selected papers. The final number of relevant 

papers published from 2002 to 2016 is shown in Figure Ⅰ. 

 

Figure 1: Statistics on the cumulative number of published papers each year. 

Figure 1 shows that the number of published papers was relatively low before 2011, while since 

2012, the number of related papers has shown a polynomial growth trend. The academic community's 

attention to software defect detection has increased since 2012. 

Software defect prediction techniques have generally been divided into two types: static and 

dynamic defect prediction techniques. Static prediction technology refers to the technique of 

predicting the number or distribution of defects based on defect-related measurement data. Dynamic 

technology predicts the distribution of system defects over time based on the timing of defect or 

failure occurrences. With the emergence of AI, the field of software defect detection has evolved 

from traditional methods to more complex approaches that utilize deep learning and LLMs. For 

example, Li et al. introduced VulDeePecker, a deep learning system for vulnerability detection that 

processes code snippets and employs bidirectional LSTM to address gradient issues and dependencies. 

It achieved an F1 score of 90.5, outperforming traditional detection methods and reducing false 

positives[3]. Xu et al.’s “Contextual LSTM” integrates CNN for local feature extraction with RNN 

for sequential dependency analysis, achieving superior F1 scores over individual CNN and LSTM 

models on the Sard dataset [4]. 

The rise of large-scale language models has changed the mode of software development and defect 

detection, while bringing new challenges and uncertainties to the research of software defect 

prediction. However, there is currently a lack of systematic analysis in this area. To address this 

problem, we conduct a literature review, comparing and contrasting software defect detection 

methods based on traditional approaches, deep learning techniques, and LLMs. This review delves 

into the transformative impact of LLMs on software development processes and defect detection 
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methods. By examining historical processes and current trends, we aim to clarify the advantages and 

limitations of each method. 

In addition, we discuss the impact of large language model integration on software defect 

prediction, emphasizing the shift in research focus and the necessity of new strategies to address 

emerging complexities. The analysis presented in this study lays the foundation for future empirical 

verification and provides insights into the direction of software defect prediction research. It also 

helps guide practitioners and researchers in selecting and developing more effective defect detection 

tools. 

2. Literature Review of Software Defect Prediction 

2.1. Classical Software Defect Prediction Methods 

Since the 1970s, statistical learning methods have emerged, utilizing historical records and software 

metrics (such as identified defects) to predict the total number and classification of defects in software 

systems. Defect prediction technology aims to assess whether a software system is ready for delivery. 

This technology tallies the number of confirmed defects in the system and estimates the number of 

potential defects that may not have been discovered yet. Defect prediction technology plays a crucial 

role in improving software quality and ensuring its reliability, while also driving significant 

development in the field of software engineering. In the early stages of software development, defect 

detection mainly relied on manual labor, including code reviews, design, and execution of test cases. 

Although this method was time-consuming and labor-intensive, it was the only option available at 

the time. 

Since the 1970s, software defect prediction techniques have generally been divided into two types: 

static defect detection techniques and dynamic time-based software defect prediction techniques. The 

development of static defect prediction technology has a long history, initially focusing on defect 

prediction based on metrics such as software size. In order to predict the possible number of defects 

in software, researchers are committed to studying the relationship between defects and basic 

characteristics such as software size and complexity. In the early 1990s, people began to realize that 

defects in software were not uniformly or completely randomly distributed. It promoted the 

development of prediction techniques for defect distribution characteristics. Moreover, the 

introduction and removal of defects at different stages of the software development lifecycle 

significantly impact residual defects. Corresponding software defect prediction models have achieved 

remarkable results in practice[5].  

Another crucial defect prediction technique is based on temporal relationships. Many dynamic 

reliability models adopt this type of prediction method. This area of research focuses on uncovering 

the distribution patterns of software defects over time during the software lifecycle or in specific 

phases through empirical studies and statistical methods. Dynamic testing identifies defects by 

executing the software, monitoring its behavior, simulating real-world usage environments, and 

detecting issues that are difficult to uncover through static analysis. 

2.2. Software Defect Prediction Method Based on Deep Learning 

In research on defect detection for large and complex software systems, it is commonly believed that 

most defect-related information can be gleaned through in-depth analysis of the code. Therefore, the 

ability to analyze code data is of great significance for how to efficiently detect software defects. 

Machine learning methods, especially those based on big data analysis, can identify and learn patterns 

from large amounts of data. Although early defect detection research primarily relied on machine 

learning techniques, these methods exhibit significant shortcomings in efficiency and accuracy. Most 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/99/20251769 

136 



machine learning approaches depend on features manually crafted by experts, and their performance 

is limited by the quality of feature engineering. 

With the remarkable success of deep neural networks have achieved great success in technologies 

such as image recognition and natural language processing, some researchers have begun to explore 

their application in source code defect detection. For example, S. Sivapurnima et al. developed an 

efficient adaptive deep learning model (ADLM) for the automatic detection and classification of 

duplicate error reports. In the preprocessing stage, data is collected from online systems. Useless 

information is removed through text cleaning, data type conversion, and null value replacement, 

encompassing stop word removal and stem extraction. Four types of feature extraction methods, 

namely context, classification, time, and text features, are adopted. After independently generating 

the LSTM and CRF models during the model construction phase, the LSTM is integrated into the 

CRF structure. Although CRF can independently utilize features for decision-making, classification 

may need to be improved due to solid dependencies on the output. LSTM, with its advantage of 

processing time series information, updates the hidden layer of CRF through its gating mechanism 

(including the forget gate, input gate, output gate, and memory unit), thus enhancing the model 

performance. Meanwhile, the characteristics of the Dingo Optimizer mathematical model are utilized 

to select the optimal weight parameters in CRF-LSTM. Compared with existing methods for this 

purpose, it demonstrates high accuracy[6]. Preliminary results indicate that deep learning exhibits 

advantages in defect detection that traditional methods and early machine learning approaches do not 

possess[7]. Moreover, there is considerable potential for further research in this field. 

2.3. Software Defect Prediction Method Based on Large Language Model 

The Large Language Model (LLM), taking ChatGPT as an example, has attracted great interest from 

the computational and data science communities due to its wide range of applications and powerful 

performance. Its significant effectiveness in understanding natural language and generating 

meaningful content has sparked interest in various disciplines, including software engineering. 

Therefore, after the proposal of the LLM, some researchers began to carry out software defect 

detection based on it. For example, X. Wang et al. proposed a novel framework based on a Large 

Language Model for software defect detection[8]. I t leveraged the pre-trained CodeT5+ and (IA)3 

for parameter-efficient software defect detection. S. Hossain et al. demonstrated their success in APR 

technology based on the framework Toggle proposed by the LLM, establishing a new benchmark test 

for CodeXGLUE code optimizations[9]. It demonstrated significant performance on multiple datasets, 

including Defects4J. 

The LLM has shown significant potential in the field of software development. It enables tasks 

such as code generation, program defect repair, code documentation, and the creation of test cases[10]. 

In the process of automating program debugging and repair, fault localization technology plays a 

crucial role and has become a highlight in the release of ChatGPT-4[11].  
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3. Comparative Analysis 

3.1. Comparison Analysis of the Traditional Software Defect Prediction Methods 

Table 1: Comparison Analysis of the Traditional Software Defect Prediction Methods. 

Software Defect 

Prediction 
Authors Year Techniques 

Usage 

Scenario 
Weakness 

Static 

Software 

Defect 

Prediction 

 

Defect 

Prediction 

Model 

S. Chulani et 

al[12] 
1999 

COQUALMO 

model 

Used in the 

planning phase 

Static Software Defect 

Prediction 

M. Fagan[13] 1999 DRE model 

Suitable for 

stable life 

cycle and 

process models 

Reliable defect 

classification and matrix 

methods are needed to 

map to the source and 

discovery of defects 

N. Fenton et 

al[14] 
2007 

Bayesian 

model 

Used in 

scenarios 

lacking defect 

data and 

requiring risk 

analysis 

Needs expert experience 

and judgment. 

L. Briand et 

al[15] 
2000 

Capture-

recapture 

model 

Determine 
whether re-

inspection of 

the software 

product is 

necessary 

Requires stringent 

assumptions. 

Defect 

Distribution 

Prediction 

T, 

Khoshgoftaar 

et al [16] 

2000 

Classification 

technology, 

Regression 

technology 

Applying to 

make planning 

and testing 

Cannot well balancing 

Type I and Type II 

misclassifications 

Metric-

Based 

technology 

T, 

Khoshgoftaar 

et al[17] 

2006 

Size-Based, 

Complexity-

Based 
Used in 

planning. The 
required data 

size, 

complexity, 

coupling 

degree, etc. 

The density of faults 

during operation may not 

be accurately predicted 

by the defect density of 
the module; In order to 

maintain consistency 

between different 

systems, it is necessary to 

calibrate the model and 

assumptions. 

P. Li et al[18] 2005 
Process metric-

based 

V. Basili et 

al[19] 
1996 

OO metric-

based, Web 

metric-based 

Dynamic Defect 
Prediction Technology 

  
Rayleigh 

model 

Need historical 

defect density 

data and 

continuously 

track defect 

counts 

Unable to adjust based on 

changes in products, 

personnel, platforms, or 

projects that may affect 

defect prediction. 

A. Goel et 
al[20] 

1979 
Exponential 
model 

Applying to 
the formal 

testing phase 

Testing effort is 
homogeneous. 

K. 

Trivedi[21] 
1984 

S-curves 

arrival 

distribution 

models 

Excellent 

adaptation to 

large software 

projects with 

numerous 

defects 

More complicated than 

the above two models. 
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The comparative analysis of traditional software defect prediction methods is presented in Table 1. It 

indicates that the selected papers were predominantly published in the late 20th and early 21st 

centuries. Moreover, the time span between these publications is relatively extensive. Traditional 

software defect detection methods have undergone extensive development and have been thoroughly 

researched and discussed in the academic community. For example, M. Fagan introduced the DRE 

model, which is suitable for cyclic and process models with stable lifetimes[13]. Furthermore, the 

DRE model examines the characteristics of diverse project stages and processes and maps defects 

onto corresponding stages and process segments. For instance, syntax and logic errors that might 

emerge during the encoding stage can be mapped within the DRE model, thereby facilitating a more 

precise location of the defect source. It formulates a relatively standardized defect handling process 

framework, incorporating defect classification and mapping methods. Subsequent research can 

extend and optimize this framework, offering a reference and a basis for developing more appropriate 

defect prediction models for various project types. L. Briand et al. proposed a capture-recapture model, 

which is used to determine whether software products need to be rechecked [15]. It is based on the 

capture-recapture principle in biology. Considering the distinct characteristics between software 

inspection and animal capture in biology, such as the varying abilities of different inspectors (time 

response factor) and the diverse probabilities of defect detection (heterogeneity factor) in software 

inspection, a model incorporating multiple sources of variation is established. For instance, four 

models are formulated: MO (with no variation), Mh (considering only heterogeneity variation), Mt 

(considering only time response variation), and Mth (considering both time response and 

heterogeneity variations). These models possess different assumptions regarding the detection 

probabilities of inspectors and defects, thereby being more congruent with the actual circumstances 

of software inspection. Simultaneously, the "virtual inspection" method systematically investigates 

the impacts of the number of inspectors and the total number of defects on model performance. The 

systematic variations of these two factors within appropriate ranges are analyzed. Ultimately, based 

on a comprehensive assessment of the accuracy, bias, and variability of different models and 

estimators under diverse conditions, recommendations for model selection are put forward for 

different numbers of inspectors and defects. This model is typically applied during software 

development's planning and formal testing stages, particularly in environments lacking defect data, 

where risk analysis is required and large projects are handled. This method is also crucial for retesting 

decisions and relies on historical defect data for continuous improvement. 

Although traditional defect detection methods have a long history, their inherent patterns are 

inevitably flawed. Traditional static analysis methods typically rely on manually defining defect 

patterns. As software and defect complexity increase, the cost and difficulty of manual definition 

become prohibitively high. Additionally, the rates of false positives and false negatives may undergo 

significant changes due to subjective differences in human understanding. In dynamic analysis 

methods, the automatic generation and variation of test cases introduce significant uncertainty. These 

factors may lead to testing redundancy, unclear testing attack surfaces, difficulties in discovering 

access control vulnerabilities, and design logic errors. Therefore, although these early defect detection 

methods have achieved certain results in detecting defects in small software, they often cannot meet 

the requirements when faced with large, complex software systems and diverse new types of defects. 
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3.2. Comparison Analysis of Different Software Defect Prediction Methods 

Table 2: Comparison Analysis of Different Software Defect Prediction Methods. 

Method Authors Year Techniques Advantages 

Classical 

Machine 

Learning 

Technology 

N. Khleel 

et al[22] 
2021 

A software bug prediction model 

based on supervised machine 

learning algorithms 

In four publicly available 

databases from NASA, the 

model demonstrated higher 

accuracy and efficiency in 

identifying potential software 

defects. 

H. Perl et 

al[23] 
2015 

VCCFinder, an approach to improve 

code audits 

Compared to the vulnerability 

finder Flawfinder, VCCFinder 

reduces the number of false 

alarms by over 99% at the same 

level of recall. 

K. 

Elish[24] 
2008 

SVM is a supervised learning 

algorithm. It can be used for 

classification and regression 

problems, and provide relatively 

accurate prediction results. 

To provide better prediction 

results, different kernel 

functions are used. 

Simultaneously reducing 

computing power requirements. 

Deep Learning 

Technology 

A. Mishra 

et al[25] 
2024 

A novel deep learning (DL)-based 

CI/CD software defect prediction 

technique 

Compared with existing 

methods, the proposed model 

generates less label noise and 

waiting time. 

L. Qiao et 

al[26] 
2020 

A deep learning-based model for 

software defect prediction 

This method significantly 

reduces the mean squared error 

by over 14% and increases the 

squared correlation coefficient 

by over 8%. 

S. Wang 

et al[27] 
2016 

DBN, an unsupervised probabilistic 

deep learning algorithm 

few restrictions on the labeled 

dataset. 

L. 

Qiao[28] 
2017 

CNN is a deep learning architecture 

that uses convolution operations in at 

least one level to replace traditional 

matrix multiplication. 

It can detect important features 

by default without manual 

supervision. 

Large 

Language 

Model 

Technology 

 

H. Shen 

et al[29] 
2023 

A defect detection system based on 

graph convolutional neural network. 

It automatically extracts unique 

features from the AST of the 

program to explore the semantic and 

structural information of the code. 

The popular deep learning 

methods on Java projects are not 

as good as it in terms of AUC 

and F1 metrics. 

A. Briciu 

et al[30] 
2023 

BERT-based language models for 

the detection of defective source 

codes 

The CodeBERT MLM model 

trained on source code is more 

effective in detecting software 

defects than models that focus 

on natural language, such as 

RoBERTa. 

T. Le et 

al[31] 
2024 

CodeBERT and ChatGPT 

technologies for low-resource SV 

prediction 

The effectiveness research of 

ChatGPT in low-resource SV 

prediction has great prospects. 

 

The comparison analysis of different software defect prediction methods is shown in Table 2. The 

earliest paper was published in the early twenty-first century. This indicates that machine learning is 
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a technology with a long history of development. It has received extensive and in-depth research 

within academia. As an important branch of machine learning, deep learning has rapidly developed 

and been widely applied over the past decade. Software defect detection technology, with the help of 

traditional machine learning and its derived deep learning algorithms, has achieved significant 

improvements in accuracy, efficiency, and utilization of computing resources. These methods provide 

effective tools for software quality assurance by reducing label noise and waiting time while 

improving prediction accuracy and enabling automatic feature detection. 

Traditional software defect detection techniques, such as static code analysis, dynamic execution 

analysis, and manual inspection, often require a significant investment of human resources. However, 

they may not be as efficient when dealing with complex, large-scale software systems. In contrast, 

deep learning-based detection methods automatically extract features and recognize patterns from 

vast amounts of data. These techniques are capable of handling more complex defect scenarios and 

demonstrate superior generalization capabilities. By analyzing historical data from software projects, 

deep learning models can predict potential future defects. The popularity of research using deep 

learning for defect detection is continuously increasing [7]. 

Most selected deep learning and LLMs papers have been published within the past decade. The 

rise of large-scale language models represented by ChatGPT has brought new research directions to 

the academic community. Training traditional deep learning models relies on a large volume of 

labeled data. In contrast, LLMs use unsupervised learning to self-train many unlabeled text data. For 

example, H. Shen et al. proposed a defect detection framework based on graph convolutional neural 

networks (GCN)[29]. GCN combines the characteristics of convolutional neural networks and graph 

neural networks, extends the convolution operations to non-Euclidean space, conducts convolution 

operations on graphs via Fourier transform principles, aggregates node information with edge 

information to generate new node representations, and employs the GraphSAGE framework for 

learning node representations. It integrates the code semantics and descriptive semantic features and, 

after being processed by GraphSMOTE, constructs a model for prediction to capture the code 

information comprehensively. This framework outperforms popular deep learning methods in 

evaluation metrics such as AUC (Area Under the Curve) and F1 score. A. Briciu et al. proposed 

BERT-based language models to detect defective source code [30]. It adopts feature extraction rather 

than fine-tuning to obtain code embedding representations when utilizing pre-trained language 

models. It selects RoBERTa and CodeBERT-MLM, two BERT-based models, to automatically learn 

source code embeddings. It conducts a comparative study on the importance of features extracted 

from natural language datasets and code-specific semantic and syntactic patterns pre-trained from 

source code datasets for software defect prediction. This model demonstrates higher software defect 

detection efficiency than models focusing on natural language processing. These models are not 

confined to specific tasks like image recognition or speech processing. They generate coherent text 

and are suitable for various applications, including chatbots and content creation. There are significant 

differences between LLMs and traditional deep learning models regarding model structure, training 

methods, and application areas. The emergence of LLMs has provided us with a new and powerful 

tool for handling various complex tasks. Therefore, LLMs' research and application prospects in 

software defect detection are extensive. 

4. Conclusion 

In summary, the critical role of software in systems has grown. It has become a key factor in cost and 

risk, especially with the rise of complex systems. Defect prediction in software engineering is 

essential and continually evolving. Large language models (LLMs) offer a new, more adaptable 

approach to defect detection. LLMs enhance the accuracy of defect prediction.  
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We compare traditional software defect detection methods, deep learning-based detection 

techniques, and detection methods utilizing LLMs. We highlight LLMs’ significant impact on 

software development. The open-source nature of LLMs like ChatGPT facilitates their integration 

into existing processes, improving development efficiency. Despite their theoretical and practical 

promise, further research is needed to address emerging challenges in this field. 
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