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Abstract. Optimizing and understanding vision systems' computational accuracy is crucial as 

they become increasingly integrated into daily life. Dynamic Vision Sensors (DVS) and Vision 

Transformers (ViTs) lead computer vision technology with efficient object recognition and 

image processing. However, DVS data's high computational complexity poses a problem for its 

real-time implementations. Merging these technologies can enhance vision system performance 

in dynamic environments and optimize real-time DVS processing. In our work, we use a ViT 

architecture to classify the DVS 128 dataset and compare our results with existing works using 

SNNs. We analyze how our method affects accuracy and loss, experimenting with different 
DVS-to-ViT input patch sizes. Our results show that the large patch size of 32x32 pixels has 

better accuracy and smaller loss than the 4x4 pixel patches as epochs increase. Our method also 

achieved a high 98.4% accuracy and low 0.22 loss within five epochs, significantly 

outperforming previous works averaging 93.13% accuracy over more epochs. These results 

highlight ViTs' large potential for real-time DVS data classification in applications that require 

high accuracy, like autonomous vehicles and surveillance systems. 

Keywords: Dynamic Vision Sensors, Vision Transformer, Deep Learning, Vision Systems, 

Gesture Recognition. 

1.  Introduction 

The advancement of computer vision technologies has revolutionized and driven significant 

improvements in the field, whether in autonomous driving or medical imaging applications. Traditional 

vision systems relying on frame- based cameras have succeeded in processing image data. However, 

they face numerous limitations in moving environments, challenged with motion blur and high latency 
within their system.[1] In recent years, the emergence of Dynamic Vision Sensors (DVS), inspired by 

the biology of the human retina, has offered a possible solution to such problems. Yet, even as the usage 
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of DVS increases, real-time applications and data processing have proved to be a continued challenge 

due to the high computational complexity of DVS systems. 

DVS sensors, also known as event-based cameras, detect changes in their current scene from their 
previously captured scene, capturing frames at a high temporal resolution in a fixed interval.[2] Each 

DVS pixel operates independently from the others, creating events whenever a change in local light 

intensity is detected.[3] This allows for capturing fast-moving objects without motion blur and reduces 
the amount of redundant and unused information stored in the system’s memory. It also reduces the 

delay between sensing and processing information, which traditional vision sensors are subject to. 

Similarly, Vision Transformers (ViT) are powerful tools in vision processing. In deep learning, their 

architecture is frequently used due to its high computational efficiency and self-attention mechanisms. 
They are a powerful machine-learning model that can handle large datasets and complex inputs.[4] 

ViT’s transformer architecture also helps it weigh the importance of different input parts, capturing 

global dependencies and contextual relationships, which may aid in the processing of DVS gesture data. 
In this work, we combine DVS’s enhanced motion-capturing abilities with Vision Transformer’s 

(ViT) high image computational efficiency, which can help improve the vision sensor’s performance in 

dynamic, fast-changing environments in real time. Our research will explore how combining the two 
can enhance DVS gesture recognition data’s processing efficiency and scalability, potentially reducing 

computational requirements and optimizing real-time DVS gesture classification. We also investigate 

how different-sized inputs may enhance or affect the accuracy and loss of the Vision Transformer results. 

In sum, our research makes the following contributions: 

• We identified a new method of implementing a Vision Transformer Architecture to process the DVS 
128 Gesture dataset and analyzed its ability to perform classification 

• We modeled and compared our method with previous experiments, analyzing the results and drawing 

conclusions 

• We experimented with different-sized inputs of DVS data to the Vision Transformer and investigated 

the impact on accuracy and loss 

Referencing previous works, we found information that will help improve our research. A study 

conducted at TCS Research & Innovation in Kolkata, India, revealed that vision-based solutions for 

identifying gestures and speech require heavy computational power and are highly inefficient.[5] As a 
result, a spiking neural network (SNN) incorporating convolution and reservoir computing was designed. 

In the work, the SNN first learns the spatial features of the gesture DVS dataset by performing 

convolution over input data, and then the temporal features are learned by using a reservoir layer of 

spiking neurons.[6] This paper achieved an overall accuracy of 89% over eight gesture classifications 
and observed that the network uses fewer parameters for learning. In another similar work that 

investigates SNNs[7], the paper observed a trend of a high percentage of accuracy when DVS cameras 

were input in SNNs. Our work will further these findings by researching the impact of DVS gesture data 
as input to another machine learning model type: transformers, specifically ViTs, in optimizing real-

time dynamic visual data analysis. 

The study confirms that dynamic vision sensing yields highly accurate results. Our study will attempt 

to determine if combining that high precision with a less power-intensive medium will result in a 
stronger overall system. 

Another study conducted at the Institute of Neuroinformatics in Zurich, Switzerland, discovered that 

the DVS performed differently when certain parameters, such as bandwidth and sensitivity, were 
prioritized. This is known as optimizing biases. DVS systems, although exceptional at capturing critical, 

dynamic information, run on complex circuitry that hampers their efficiency.[8] Every bias has an 

impact on how the other biases can be utilized. There will always be a tradeoff between benefits and 
detriments. This will be considered when running our DVS data and writing our analysis, as it will note 

the possible impacts of hardware on the final results observed. 

In our case, we are facilitating the analysis of the provided video data by introducing another medium. 

Currently, much of the vision sensor’s potential is limited by its energy requirements. We hope to 
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allocate more energy to other critical parameters by increasing the threshold at which the sensor becomes 

inefficient. By making the overall system more formidable, we expect our results to remain highly 

accurate while decreasing computational power requirements. If successful, this will make DVS sensors 
more practical and accessible. We will attempt to find an optimal balance that maintains a high accuracy 

while not requiring large amounts of power to run. 

A study conducted across several Shanghai institutes states that because transformers are highly 
sensitive to pixels and patches, they outperform many other systems.[9] The NLP Gumbel-Softmax 

transformer architecture was optimized for use with a decision network. The purpose of this is to 

pressure the program to reduce losses, which helps maintain accuracy while reducing the cost of 

computation. Energy is not wasted on lossy results. The study focuses on optimizing how data is fed to 
the network, which reduces the amount of power required to run the program efficiently. We will use 

data from a vision sensor and run it through a ViT, which will break down the information into patches. 

This process is expected to increase efficiency greatly. 
We will compare our results with those from a 2021 study conducted by the Semiconductor Research 

Corporation (SRC). The project done at the SRC attempted to solve the problem of sparse DVS data 

limiting the potential of SNN analysis. Researchers proposed the Spike Activation Lift Training (SALT), 
which increases spike activity by optimizing weights across convolutional layers.[10] SALT utilizes 

sequential optimization, which calculates the spike activation of each consecutive layer. As a result of 

this technique, the experiment yielded a high increase in performance, with a final accuracy of around 

85% across multiple time steps, as compared to around 75% accuracy without SALT. Our experiments 
will also attempt to increase performance while maintaining practical computational energy levels by 

analyzing smaller packets of information, courtesy of the ViT. By comparing our results at the end, it 

can be determined tentatively if our method of analyzing DVS data in real-time provides any profound 
benefits. 

Convolutional neural networks, although practical, are not the most efficient method of analyzing 

video data. Vision transformers (ViT) have been considered a viable replacement for CNNs, as they are 

proficient at object detection and image comprehension.[11] Researchers have determined that both 
CNNs and transformers do their tasks with equal benefits and disadvantages. By manipulating certain 

factors, we aim to determine how integrating DVS with ViTs further optimizes the computational 

process compared to past research. Although CNNs and ViTs possess certain common features, there 
are distinct variances. While other neural networks are also sufficient for the task, ViTs are a notable 

candidate for visual analysis.[12] Our study will consider the efficiency of implementing a ViT structure 

in dynamic vision sensing. 

2.  Methods 

We directly used an existing DVS dataset imported from the Tonic library[13] and preprocessed the data 

to ensure the data type fit the model’s requirements before training. To train our machine learning 

algorithm, we implement the library Pytorch[14] to run the DVS data through our written ViT model. 
Then, we compare the results with existing research on optimizing Spiking Neural Networks (SNN) for 

DVS.[15] We also use a pre-existing dataset, the DVS128 Gesture Dataset from SpikingJelly, to classify 

hand gestures.[16] We plan to train our vision transformer on this video dataset. 

2.1.  Dynamic Vision Sensors 

The DVS format is based on text files, where each line corresponds to a single event, and DVS data is 

commonly saved as a .npz file. The format consists of four pieces of information: timestamp, x-
coordinate, y-coordinate, and polarity. The timestamp is when the event occurred and is essential to 

reconstructing temporal information and understanding the precise order of events. The X and Y 

coordinates represent the pixel’s coordinates where the event occurred, recording changes in intensity 

at specific pixel locations. Finally, the polarity indicates whether the pixel’s intensity increased or 
decreased at the given timestamp in relation to the previous information the DVS captured. After 

receiving information via light intensity, the sensor will convert the data into electrical signals. Then, 
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the information goes through a comparator, which interprets the signal as positive or negative. After 

processing, the information is recorded as an event.[17] 

Figure 1 shows how the incidence light luminance curve causes changes in spiking. When the voltage 
curve goes below the negative threshold, or the horizontal blue lines, a negative event is output.[18] 

This means that the luminance in that pixel has dimmed. Conversely, when the curve passes through the 

higher threshold, indicated by the red line, a positive event is output; in this case, the luminance in the 
pixel has been detected to increase. 

  

Figure 1. This chart displays the incidence light luminance 

going below the negative threshold and above the positive 

threshold as time continues. 
 

Figure 2. Diagram of a frame 

split into 14, 16×16 pixel patches 

Using this format of DVS data, we adjusted the input to the Vision Transformer by splitting the DVS 

video data into a set number of 16 frames, equally spaced throughout the time interval of the entire video. 
An example of the original data visualized in frames is below in Figure 3. Then, each frame was 

downsampled using the tonic library’s transforms.downsample function into 14 by 14 grid of 16 x 16 

pixel frames, shown in Figure 2. 3 example frames are visualised in Figure 4. These downsampled 

frames are then saved into .jpg files under the same folder (for frames from the same video) to be input 
later into the Vision Transformer. 

 

Figure 3. Examples of visualized DVS 128 Gesture data using the tonic library 
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Figure 4. Examples of visualized DVS 128 Gesture dataset after downsampling into 16x16 pixelated 

frames 

2.2.  Vision Transformer 

After data preprocessing and importing all the necessary libraries (PyTorch, NumPy, Matplotlib, Tonic), 

we build the model architecture, which defines its structure and determines how it will process the input 
data. Then, we train the model, where we feed it with input images and the corresponding labels and 

adjust parameters to minimize the loss function. Each step is explained in more detail below. 

Upon running the ViT, the image will be converted into a series of patches and transformed into 
embeddings using a linear transformation to the flattened pixel values of the patch. These embeddings 

project data into vector space where similar data has similar vectors. Next, a classification token is added 

to the input sequence, which gathers information from all patches for classification. This token is 
learnable and helps create a representation of the image. Then, positional embeddings are added to each 

input to retain where the patches are, which regular Transformers tend to lack. Finally, the Transformer 

Encoder processes the sequence. This includes multi-head attention, layer normalization, feed-forward 

network, and residual connections. Multi-head attention allows information sharing between patches, 
Layer normalization stabilizes and speeds up training, Feed-forward networks process the output of the 

attention mechanism, and residual connections improve information flow and prevent vanishing 

gradients. 

 

Figure 5. Model of the                     Figure 6. Overall structure of how ViT works,  

ViT architecture                                processing input/output 
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Fig. 4 shows a select sample of frames that display results from varying sensors with different 

parameters. These datasets are split into training and testing sets using the tonic.datasets.DVSGesture 

function with “train” being True for the training dataset and “train” being False for the test dataset. From 
there, with ViT, we will train our program to run through the training data, which will perform binary 

classification tasks with the different kinds of poses. The training loop involves loading the data in 

batches, computing Cross Entropy loss and accuracy, and updating the model parameters through 
backpropagation. The ViT was trained with a total of 20 epochs at a learning rate of 1e4 and a batch size 

of 32 (the same as the number of frames a single DVS video is split into). The exact code for the ViT is 

attached in our GitHub here.[19] Finally, we run our model through the testing dataset to classify the 

transformed DVS dataset. 
For further investigation on how patch sizes taken from each frame may affect the overall accuracy 

and loss of ViT’s DVS data classification, we go through the same process described above. Each time, 

we adjust the patch size so that it is either 4x4, 8x8, 16x16, or 32x32. 

2.3.  Metrics 

To measure how well our model does against a baseline, we will use metrics like test accuracy, cross-

entropy loss, and runtime to determine how quickly and accurately the gestures can be classified.[20] 
This metric will show how much our method optimizes time and memory. We also plan to look at 

average loss functions, specifically categorical cross-entropy. The categorical cross-entropy loss 

function measures the difference between the predicted probability distribution and the actual 

distribution by calculating the negative log-likelihood of the true class’s predicted probability and then 
averaging this value over all data points. It indicates how well the model’s predictions align with the 

true categories.[21] With categorical cross-entropy, there are many poses to classify, which is why this 

metric is more relevant than just calculating the Area under the ROC Curve (AUC ROC) for each 
category. If our program classifies the human pose in the correct category, it is a “correct” prediction. 

We aim to have the metrics (test accuracy, training time, and categorical cross-entropy) from our own 

trained model to be better and get more effective results than existing SNN models from past research. 

3.  Results 

3.1.  Experiment Results 

Our experiment disproved our original hypothesis that a vision transformer would perform significantly 

better than other models on DVS input data. The specific data found during our research is presented in 
Table 1. 

Table 1. Data tables of our Vision Transformer model’s accuracy in classifying DVS gesture data as the 

number of epochs increases. 

Patch Size 4×4 pixels  Patch Size 16×16 pixels 

Epoch Loss Accuracy  Epoch Loss Accuracy 

1  1.581  0.637   1  1.688  0.579  

2  0.854  0.838   2  0.917  0.809  

3  0.544  0.9   3  0.578  0.923  

4  0.38  0.935   4  0.364  0.962  

5  0.272  0.955   5  0.238  0.975  

       

Patch Size 8×8 pixels  Patch Size 32×32 pixels 

Epoch Loss Accuracy  Epoch Loss Accuracy 

1  1.603  0.627   1  1.881  0.474  

2  0.853  0.843   2  1.052  0.821  

3  0.54  0.913   3  0.627  0.929  

4  0.357  0.942   4  0.371  0.965  

5  0.258  0.964   5  0.22  0.984  
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Our experiment analyzes how the accuracy and loss change based on how big the patches are. We 

test these metrics on four different sizes: 4x4 pixels, 8x8 pixels, 16x16 pixels, and 32x32 pixels; we 

observed that patch size makes a large impact on the behavior of these metrics. All of these patches were 
run through 5 epochs. In the same amount of epochs, the accuracy for each patch grew with the size of 

the patch. After five epochs, the accuracy peaks at 98.4% when using larger 32x32 pixel patches. The 

lowest accuracy was 95.5% with smaller 4x4 pixel patches. 
Similarly, when analyzing the loss calculation of each patch size at five epochs, the loss was 

minimized most at 32x32 pixel patches, with a loss of 0.22. The loss was the largest at 4x4 pixels, at 

0.272. We expect our model to perform best when the loss is at its lowest and the accuracy is at its 

highest. This shows that using the largest 32x32 patches is optimal for classification on our vision 
transformer, as the loss is at the lowest and the accuracy is at the highest. The more information the 

transformer analyzes, the more accurate it will be due to a more refined image. 

  

Figure 7. Analyzes patch size changes with loss 
Figure 8. Analyzes patch size changes with 

accuracy 

Converting the tables above into graphs, we analyze how the loss and accuracy change as the number 

of epochs increases, depending on the patch sizes. For the loss function, there is an overall decreasing 
downward trend with all patch sizes. However, the larger patches, such as the 16x16 pixel and 32x32 

pixel patches, decrease at a much faster rate. Initially, these larger patches start at a much higher loss, 

but once reaching epoch 4, it becomes lower than the other patch sizes. However, with accuracy, there’s 
an overall increasing trend as the epoch count increases. The larger patches can increase at a much faster 

rate compared to the smaller patches, especially shown with the 32x32 pixel patches (green line). 

Initially, the larger patch sizes start at a lower accuracy than the small ones. When the training cycle 
reaches 2-3 epochs, because of the rapidly increasing rate, the larger patches result in a larger value than 

the small patches. This shows how the system can analyze large amounts of information very precisely 

with minimal errors. 

3.2.  Accuracy Comparison 
We compared the accuracy results from our model to this previously existing research on Optimizing 

Deeper Spiking Neural Networks.[22] Here is the data table showing a comparison of our experiment’s 

collected data with previous existing research data: 

Table 2. Data table of the results from another experiment that implemented SNN models on the 

DVS128 Gesture Dataset 

Method Accuracy (%) 

Spikformer-4-384 400E 95.51 
Spikformer-4-256 93.94 

STBP NeuNorm 90.53 

Diet-SNN 92.54 
Our Method (ViT) 98.4 
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Table 2 analyzes the accuracies of different SNN models on DVS data using their model Spikformer, 

which will be our baseline for accuracy comparison. Spikformer classifies DVS data by converting the 

input images into spike- form feature vectors, in which the Spikformer encoder captures relevant 
information. This paper analyzes past SNN models to their Spikformer SNN models for accuracy 

comparison. All of these models perform relatively similar to each other, at 90% or above. The 

Spikformer-4-384 400E and Spikformer-4-256 have a final accuracy at 95.51% and 93.94% respectively. 
The other SNN models, like STBP NeuNorm, perform at 90.53%, and Diet-SNN performs at 92.54%. 

All of the models listed above average at an accuracy of 93.13%. 

The accuracy values found through our custom Vision Transformer to our DVS128 Gesture Dataset 

outperforms the values of the accuracies from previous research that implemented SNNs on DVS data. 
Looking at the average of all the above SNN models, which is 93.13%, our model performs around 4.37% 

more, resulting at a final accuracy of 98.4%. 

This accuracy can be attributed to the vision transformer’s ability to analyze information better when 
the depth of data increases. After the input is split into individual patches, they are embedded into the 

transformer in the order that it finds the most efficient.[23] Self-attention mechanisms within the 

transformer allow it to dedicate its analysis toward a specific portion of the input. The transformer 
continues this down a single sequence, which means that the transformer analyzes the input one layer at 

a time; the transformer focuses all of its attention on a portion of the image and then pieces these results 

together, resulting in a higher overall classification accuracy. As well as analyzing the image patch by 

patch, the transformer will view the patch in relation to the rest of the image by detecting local and 
global dependencies, using this information to figure out the context. Only frame-to-frame differences 

are analyzed, which lowers computational energy. The architecture achieved a high accuracy with high 

efficiency due to self-attention, which means that biases specific to the input are not required. The 
transformer performed the best with the largest patch size, 32 x 32, because there were more pixels 

present that could be used to ascertain the context. 

4.  Conclusion 

In this paper, we proposed implementing a Vision Transformer machine learning architecture to process 
Dynamic Vision Sensing (DVS) data for increased performance when analyzing and classifying motion 

sensor data in real- time. Using the vision transformer to analyze the DVS128 gesture dataset, the 

accuracy was reduced by 50%, having weaker capabilities to classify the different human poses. 
However, the model shows a positive trend with the accuracy increasing as the number of epochs 

increases, suggesting that the model has a large potential for highly accurate results. Furthermore, the 

model reduced computational costs enough to potentially justify widespread use. Across many trials, 
the extensive training of the program yielded such results. Using this program, there are numerous 

possibilities to expand our research to various fields of real-time motion-sensing vision systems, 

including emerging technologies like autonomous vehicles, surveillance systems, or vision classification 

in robotics. 
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