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Abstract. The quantum ant colony algorithm (QACO) is explored as a solution to the traveling 

salesman problem (TSP), targeting inefficiencies such as slow convergence and local optima 

entrapment found in traditional ant colony optimization (ACO) methods. By integrating quantum 
computing elements, specifically quantum rotation gates and qubits, into the ACO framework, 

QACO demonstrates enhanced efficiency and faster convergence. This paper delves into the 

foundational principles of quantum computing and their application to refine ACO, effectively 

solving the TSP. An in-depth analysis is provided, showcasing QACO's advantages over 

traditional ACO through empirical examples. These examples illustrate QACO's potential to 

improve path planning for applications within the rapidly growing e-commerce and logistics 

sectors. The integration of quantum mechanisms facilitates a more dynamic pheromone update 

process, which significantly reduces the likelihood of premature convergence and enhances 

solution quality in complex optimization scenarios. This advancement indicates a promising 

direction for future research in algorithmic optimization in both theoretical and practical 

applications.  
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1.  Introduction 

As industries such as e-commerce and logistics continue to expand, the importance of efficient path 

planning algorithms has become increasingly evident. Among the various problems in this field, the 

Traveling Salesman Problem (TSP) stands out due to its complexity and practical relevance. 
Traditionally, the ant colony optimization (ACO) method has been widely adopted for such tasks, 

drawing inspiration from the foraging behavior of ants to find optimal paths through probabilistic and 

pheromone-based techniques. However, despite its popularity, ACO suffers from limitations like slow 
convergence speeds and a tendency to get stuck in local optima, which can severely hinder its 

effectiveness in more complex or larger scale applications [1]. 

Current Research Status: To overcome the shortcomings of traditional ACO, advancements in 
quantum computing have paved the way for a more robust solution through the development of the 

Quantum Ant Colony Optimization (QACO). This novel approach integrates quantum mechanics with 

ACO, particularly employing quantum rotation gates and quantum bit (qubit) representations to enhance 

pheromone updating processes. This integration not only accelerates convergence but also provides a 
broader exploration capability, thereby increasing the likelihood of reaching the global optimum. Recent 

studies, such as those by Li Yueguang et al. and M. Garcia de Andoin, have demonstrated the potential 
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of QACO in solving not only the TSP but also other complex combinatorial optimization problems with 

more efficiency than its classical counterpart [2-4]. 

Research Content of This Paper: This paper delves into the foundational principles of quantum 
computing and explores its integration with the traditional ACO framework to address the TSP more 

effectively. Through theoretical analysis and empirical examples, the paper evaluates the performance 

enhancements that QACO offers over traditional ACO. It highlights the dynamic pheromone update 
process enabled by quantum mechanisms, which significantly mitigates issues of premature 

convergence and improves the quality of the solutions found. Furthermore, the practical applications of 

QACO in fields like e-commerce and logistics are discussed, illustrating its potential to revolutionize 

path planning tasks in various industries. By providing a comprehensive review and analysis of QACO, 
this study contributes to ongoing efforts to optimize complex problem-solving techniques in operational 

research and computer science. 

2.  Relevant theories 

2.1.  Traditional ant colony algorithms 

Ant Colony Optimization (ACO) is a nature-inspired metaheuristic frequently used to address various 

optimization challenges [5]. 

 

Figure 1. ACO schematic diagram (Photo credit: Original). 

As illustrated in Figure 1, Ants start from the starting point. When they encounter obstacles, they will 
try to find a relatively short path to cross the obstacles and leave pheromones. Since the path below is 

relatively short, more ants will choose the path below, and thus leave more pheromones on this path. 

Subsequent ants are more inclined to select the path below [6]. 
Ants start from the starting point and choose the next city based on a probability formula as follows 

formula (1) [7]: 

 𝑃𝑖𝑗
𝑘 =

(τ𝑖𝑗)
α

(η𝑖𝑗)
β

∑ (τ𝑖𝑙
)

α
(η𝑖𝑙

)
β

𝒍∈𝒋𝒌

 (1) 

Where: 

τ𝑖𝑗  represents the pheromone concentration between city 𝑖 and city 𝑗. 

η
𝑖𝑗

 is the heuristic function, which indicates the attractiveness of the path from 𝑖 to 𝑗 and is often 

inversely proportional to the distance:  

 η
𝑖𝑗

=
1

𝑑𝑖𝑗
 (2) 

Parameters α and 𝛽 determine the significance of pheromones and the heuristic function, respectively. 
After all ants have completed one round of path construction, Pheromones on each path are updated 

according to this formula: (3) [8]: 

 

food 
Ant colony 

Obstacle 
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Where: 

𝜌 represents the pheromone evaporation rate. 

∆τ𝑖𝑗
𝑘  is the pheromone increment added by ant k on the path from city iii to city j, defined as:  

 ∆τ
𝑖𝑗

𝑘
=

𝑄

𝐿𝑘
 (4) 

𝑄 is a constant, and 𝐿𝑘 represents the length of the path completed by ant k. 

2.2.  The traveling salesman problem 

The Traveling Salesman Problem (TSP) is an NP-hard problem, commonly used as a benchmark to 

analyze the performance of metaheuristic algorithms [9]. It is a classic problem in operations research 
and computer science. It involves a salesman who must iterate over a given number of cities, visiting 

each city exactly once before returning to the starting point. The goal is to determine the shortest possible 

route that minimizes the total distance or cost of the trip [10]. 

2.3.  Quantum ant colony algorithm 
QACO is an innovative optimization algorithm that combines traditional ACO with quantum computing. 

The core of QACO is to introduce quantum rotation gates in quantum computing into the ACO, use 

quantum bit encoding to generate quantum pheromones, and update pheromones through quantum 
rotation gates [11]. The algorithm flow of QACO is shown in the figure 2 [12]: 

 

Figure 2. Implementation process of QACO (Photo credit: Original). 

3.  System analysis and applications 

3.1.  Mathematical model 

3.1.1.  Qubit encoding. Compared to traditional bits which represent only two states 0 and 1, qubits 

consist of two possible states |0⟩and |1⟩. A qubit |ψ⟩ can be represented as: 

 ||𝜓⟩ = α|0⟩ + β|1⟩ (5) 

START 
Information initialization, including ant 

colony number, quantum pheromone matrix and 

heuristic information, etc. 

Ants choose paths based on heuristic 

information and pheromones 

Meet the iteration 

number requirements 

Using quantum rotation gates 

to update the pheromone matrix 
Fitness Value of 

calculation solution 

Output the optimal 

solution 
END 
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α and β are the probability amplitudes of the quantum state |ψ⟩, respectively, and α and β are complex 

numbers that satisfy formula (6) [13]: 

 𝛼2 + 𝛽2 = 1 (6) 

3.1.2.  Quantum rotation gate. Different from the method of updating pheromones through formula 

mentioned above, quantum ant colonies update quantum pheromones through quantum revolving gates. 
The method is as follows: 

 [
𝛼𝑡+1

𝛽𝑡+1

] = [
cos 𝜃   −sin 𝜃

sin 𝜃      cos 𝜃
] [𝛼𝑡

𝛽𝑡
] (7) 

Where: 

𝛼𝑡   and 𝛽𝑡   are the quantum state coefficients for path (i, j) in iteration t. 

𝜃 is the rotation angle that adjusts the pheromone update, directing the search towards the optimal 

solution. 
The quantum rotation gate allows for dynamic adjustment of the pheromone concentration. 

The principle diagram of the quantum revolving door is shown in Figure 3: 

 

Figure 3. Principle diagram of quantum rotation gate (Photo credit: Original). 

As shown in Figure3, the ant currently searching is the kth ant, the solution that needs to be rotated 

is |ψk⟩, there are two rotation directions can be selected. One rotation direction approaches the optimal 

solution |ψbest⟩, while the other moves away from it. But the ideal situation is that all solutions approach 
the optimal solution, This enhances the speed of finding the optimal solution. Therefore, the choice of 

rotation angle 𝜃 is very important [14]. 

The rotation angle is selected according to formula (8): 

 𝜃𝑖𝑗=∆𝜃𝑖𝑗 × 𝑠𝑔𝑛(𝑥) (8) 

 𝑥 = (𝛼𝑖𝑗 × 𝛽𝑖𝑗)(𝐿𝑘 − 𝐿𝑏𝑒𝑠𝑡)(𝑅𝑘[𝑖, 𝑗] − 𝑅𝑏𝑒𝑠𝑡[𝑖, 𝑗] (9) 

In formula (9), 𝑥 represents the magnitude of the rotation angle. sgn (x) is a sign function that 

determines the direction of the rotation angle. x is the independent variable of the symbolic function. 𝐿𝑘  

and 𝐿𝑏𝑒𝑠𝑡  represent the path length explored by current ant and the optimal path length searched by all 

ants, respectively. 𝑅𝑘[𝑖, 𝑗] and 𝑅𝑏𝑒𝑠𝑡[𝑖, 𝑗] are the path length searched by current ant and the optimal 
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path matrix (i, j)’s value that searched by all ants, respectively. The rotation angles used in different 

situations are different and need to be selected according to the actual situation. 

3.2.  Algorithm efficiency evaluation 
To assess the effectiveness of the QACO, and its efficiency advantage over the traditional ACO, Li 

Xiang et al. designed a simulation experiment in the python 3.7 environment and compared the results. 

The experimental parameters are established as outlined in Table 1 [15]: 

Table 1. Experimental parameter settings. 

parameter 

Ant 

colony 

size 

Number 
of nodes 

Pheromone 

Inducing 

Factor α 

Expectation 

Heuristic 

Factor β 

Pheromone 

volatility 

factor ρ 

Maximum 

number of 

iterations 

 200 50 1.0 0.5 0.5 1000 

 

After taking the average value of multiple experiments, compared it with the classic ant colony 

algorithm. The comparison results are established as outlined in Table 2: 

Table 2. Comparison experiment results. 

Algorithm 

Known 

optimal 

solution 

Average 

evolutionary 

generations 

Optimal 
solution 

Worst 
solution 

Average 
value 

ACO 3823 74.1 3825 3826 3825.1 

QACO 3823 44.9 3824 3910 3859.6 

 
Table 2 shows that the QACO is significantly better than the classical ACO in global optimization 

and convergence speed.  

3.3.  Applications of QACO 
Owing to its superior performance and faster convergence compared to traditional ACO, the quantum 

ant colony algorithm is widely applied to various optimization problems. For example, using QACO 

algorithms to optimize distributed database models and reduce the expense of query connections in 
distributed databases [16]. Using QACO algorithms to solve the two-stage permutation flow shop 

problem with batch processing machines to improve the work efficiency of large-scale operations in 

practical work [17]. The QACO can also be used in the field of wireless sensor networks to find low-

latency paths between source nodes and target nodes and improve network utilization [18]. In addition, 
QACO have also been widely used in traffic path planning, supply chain management, intelligent 

manufacturing and other fields. 

4.  Challenges 

Although QACO has been widely used in addressing optimization problems and practical applications, 

it still has the following limitations that need to be addressed [19]: 

The efficiency of pheromone coding is not high, and the quantum gate rotation strategy is not 

adaptable enough. 
The core logic of the QACO is to introduce the concepts of quantum coding and quantum revolving 

door into the traditional ant colony algorithm to improve its performance. However, the QACO itself is 

still just an improved ACO, and the inherent defects of the ACO itself still exist. 
Although the quantum ant colony algorithm shows good results in simple optimization problems, if 

the quantum bits are converted into classical bits through simple projection measurement and 

transformation of the solution space, the algorithm will not be able to show its superiority in solving 
multi-parameter optimization and high-precision calculation problems. 
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At present, the basic mathematical research on quantum computing is still incomplete, especially in 

the aspects of parameter design and convergence analysis, which requires more attention from scholars. 

5.  Conclusion 

This study has introduced and evaluated the Quantum Ant Colony Optimization (QACO) algorithm as 

an advanced solution to the Traveling Salesman Problem (TSP), a longstanding and complex issue in 

operations research and computer science. By integrating quantum computing elements, specifically 
quantum rotation gates and qubits, into the traditional Ant Colony Optimization (ACO) framework, the 

QACO demonstrates significantly enhanced efficiency and convergence speeds. Through a detailed 

analysis involving empirical examples, the paper highlighted the improved dynamic pheromone update 

process enabled by the quantum mechanisms. This process effectively addresses the shortcomings of 
slow convergence and frequent entrapment in local optima that are often observed in the traditional 

ACO approach. The quantum-enhanced algorithm not only streamlines the computation process but also 

expands the possibilities for more complex problem solving in various industrial applications. Looking 
forward, the potential of QACO in broader applications suggests a rich area for future research. The 

current study’s success invites further exploration into other combinatorial and high-dimensional 

optimization problems where QACO's capabilities could be similarly beneficial. Future studies should 
aim to refine the quantum pheromone update mechanisms to ensure even greater efficiency and 

applicability across diverse scenarios. Additionally, considering the rapid advancements in quantum 

computing technology, ongoing research will also need to focus on integrating these developments to 

continually enhance the QACO framework. Investigating the adaptation of QACO to other challenging 
domains such as network design, logistics optimization, and artificial intelligence could provide valuable 

insights and contribute significantly to the fields of quantum computing and optimization algorithms. 
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