
 

 

Research on Image Feature Extraction Based on 

Convolutional Neural Network 

Siqi Xiang
 

College of Engineering, Shantou University, Shantou, China 

sokiwchio163@163.com 

Abstract. This article explores the impact of various hyperparameters on the performance of 

image feature extraction using convolutional neural networks (CNNs), with a focus on learning 

rate, dropout rate, batch size, and the number of epochs. Using the CIFAR-10 dataset, extensive 
experiments were conducted to optimize these parameters, aiming to achieve high accuracy 

while avoiding overfitting. The findings underscore the importance of carefully selecting these 

hyperparameters to balance training efficiency and model performance. Through a rigorous 

analysis of the effects of these hyperparameters on model performance under various 

configurations, including training accuracy, test accuracy, training loss, and test loss, our 

experimental results indicate that the model achieves optimal performance with a learning rate 

of 0.0001 and a dropout rate of 0.5. The model demonstrates optimal performance in avoiding 

overfitting when the number of training epochs is set to 10. Additionally, although batch size has 

a relatively minor effect on overall model optimization, a slight improvement in performance 

was observed when the batch size was set to 32. 

Keywords: Convolutional Neural Networks(CNNs), Image Feature Extraction, 

Hyperparameters, Learning Rate, Dropout Rate. 

1.  Introduction 

Convolutional Neural Networks (CNNs) are feedforward neural networks tailored for processing two-

dimensional data, particularly images, exhibiting remarkable capabilities in image and speech 

recognition. Since the concept of "receptive field" was introduced by Hubel and Wiesel in 1962, CNNs 
have evolved significantly, beginning with Fukushima Kunihiko's "Neocognitron" in 1980 and further 

advancing with LeNet-5 in 1998, which laid the groundwork for modern architectures. The breakthrough 

came in 2012 when Hinton's AlexNet substantially reduced the error rate in the ImageNet competition, 
leading to the emergence of models like GoogLeNet and DenseNet that have enhanced performance. 

Despite these advancements, challenges remain, including the transition from supervised to 

unsupervised learning, optimization of neural network efficiency and accuracy, robustness against 
adversarial samples, and GPU resource limitations, indicating notable research gaps. This study 

examines the optimization of CNN efficiency and accuracy through hyperparameter tuning, specifically 

focusing on influential factors such as learning rate, dropout rate, batch size, and epoch number, and 

their effects on a simple CNN model trained on the CIFAR-10 dataset. The research employs data 
analysis and model comparison to identify how these hyperparameters influence model performance. 

The findings aim to address current challenges in CNNs, particularly in enhancing performance in 
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unsupervised learning and improving robustness against adversarial samples. While the simple CNN 

model serves as a foundational analysis, it is anticipated that the insights gained will guide further 

explorations into optimizing complex architectures like AlexNet, contributing to the future development 
of CNNs in diverse applications. 

2.  Experiment 

2.1.  The CIFAR-10 dataset preparing 
Before initiating the actual training runs, it is essential to establish the dataset and set some fixed 

parameters.High-quality images significantly enhance object recognition or classification rates 

compared to unprocessed, noisy images[1]. For our project, we selected the "CIFAR-10 Dataset," which 

is a benchmark dataset commonly used in image classification tasks. The CIFAR-10 dataset comprises 
60,000 color images, each with dimensions of 32x32 pixels. These images are divided into 10 distinct 

classes, with each class containing 6,000 images. The dataset is split into 50,000 images for training and 

10,000 images for testing. This distribution ensures that the model is trained on a large portion of the 
data while reserving a substantial set of images for evaluation.To achieve a robust evaluation of the 

model’s performance, we allocate 80% of the datasets to the training set and 20% to the test set. 

2.2.  The architecture of convolutional neural networks(CNNs) 
To ensure consistency and reproducibility in the partitioning of the dataset, we can use the parameter 

"random_state=42" as the seed for the random number generator. This parameter ensures consistent 

results across multiple runs by maintaining the same data split every time the code executes. Regarding  

the model structure, it is designed to handle the specific requirements of image classification tasks. 
LeCun, the originator of convolutional neural networks, proposed LeNet in 1998 to solve the visual task 

of handwritten digit recognition. Since then, the most basic architecture of CNN has been settled: 

convolutional layer, pooling layer, and fully connected layer[2]. The architecture includes several key 
components: the input layer, convolutional layers, pooling layers, fully connected layers, dropout layers, 

and the output layer. VGG Net highlights the importance of depth in convolutional networks, suggesting 

that a CNN should maintain a deep yet straightforward structure to effectively capture the hierarchical 

processing of visual data[3]. The fixed image size facilitates processing, and the dataset image itself is 
32x32 pixels, so the input layer is designed to process color images with input shapes of (32,32,3). This 

shape represents images of 32x32 pixels, with 3 color channels corresponding to the RGB values. This 

allows the model to process and analyze the color information present in the images.Convolutional 
Layers: The convolutional part of the network consists of six layers organized sequentially. The first 

convolutional layer applies 32 convolutional kernels of size 3x3. These kernels scan the image to detect 

various features. The second convolutional layer uses 64 kernels of size 3x3, which allows the model to 
learn more complex features. The third convolutional layer employs 128 kernels of size 3x3, further 

enabling the model to capture intricate patterns and details in the images. The Rectified Linear Unit 

(ReLU) activation function is used in each convolutional layer. This gives the model nonlinearity and 

helps it learn complex patterns. A pooling layer follows each convolutional layer. The pooling layers 
use a 2x2 pooling kernel to downsample the feature maps. This downsampling reduces the spatial 

dimensions of the feature maps while retaining important information. Pooling helps reduce the 

computational load and mitigates the risk of overfitting by abstracting the feature maps. Fully Connected 
Layers: After the convolutional and pooling layers, the model transitions to the fully connected layers. 

The fully connected layer flattens the high-level features extracted by the convolutional layers and 

connects them to a dense layer with 128 neurons. This layer uses the ReLU activation function to 
introduce further non-linearity and enhance the model’s ability to learn complex representations. 

Dropout Layers: The incorporation of dropout layers prevents overfitting by randomly setting a fraction 

of input units to zero at each update during training. This helps to reduce neuron co-adaptations and 

promotes network sparsity. Output Layer: The final layer is the output layer, which consists of 10 
neurons, corresponding to the 10 categories in the CIFAR-10 dataset. This layer uses the softmax 
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activation function to produce a probability distribution over the 10 classes. The softmax function 

converts the raw output scores into probabilities, which facilitates the classification of images into one 

of the 10 categories. The choice of these layers and their configurations is pivotal in determining the 
model's performance. The convolutional layers are crucial for feature extraction, while the pooling 

layers help in reducing computational complexity and mitigating overfitting. The fully connected layers, 

along with dropout, are essential for learning complex representations and enhancing generalization. 
The output layer's softmax function is crucial for generating class probabilities and making final 

predictions. 

In summary, the CIFAR-10 dataset, combined with our meticulously designed CNN architecture, 

serves as the foundation for our image feature extraction project. By leveraging this structure, we aim 
to optimize model performance and achieve accurate and reliable feature extraction results. 

3.  Analysis and Discussion 

In my experimentation, the primary parameters adjusted were the learning rate and dropout rate, with 
the epoch number set to 50 and the batch size at 64. The selection of the optimal learning rate is crucial, 

as it significantly influences whether the neural network can converge to the global minimum. Setting 

the learning rate too high tends to skip over the global minimum, causing the network to oscillate around 
it without ever truly converging to it. Conversely, a smaller learning rate facilitates convergence to the 

global minimum, but it takes more time to do so. Thus, while a higher learning rate can expedite the 

convergence process, it may lead to unstable training results. On the other hand, a lower learning rate, 

while promoting stability, may slow down convergence and increase the risk of the model getting stuck 
in a local minimum. Increasing the learning rate can improve results faster, but it may also cause the 

model to oscillate around the best solution or diverge[4]. On the other hand, decreasing the learning rate 

can lead to more stable model convergence, but it may slow down the training process and increase the 
risk of getting stuck in local optima[5]. Furthermore, dynamic learning rate adjustment methods, such 

as learning rate decay, have been demonstrated to greatly improve model performance[6]. However, 

dynamically modifying the learning rate may also increase computational costs[7]. The dropout rate is 

another critical parameter that helps prevent overfitting, enhances the model’s generalization capability, 
promotes network sparsity, and reduces co-adaptability among neurons. Nevertheless, excessively high 

dropout rates may introduce the risk of underfitting. Using "dropout," a technique where each hidden 

neuron's output is set to zero with a probability of 0.5, efficiently reduces test errors in large neural 
networks without significantly increasing training costs. Therefore, it is essential to test learning rates 

and dropout rates independently by controlling other variables. An appropriate dropout rate can 

effectively prevent overfitting and improve the model’s performance on new data [8]. Research indicates 
that higher dropout rates can significantly reduce overfitting but may also make the model training more 

challenging[9]. Conversely, a lower dropout rate affects the model’s structure less but might not be as 

effective in preventing overfitting[10].Practically, we can evaluate the learning rate using the following 

parameters: [0.01, 0.001, 0.0001], and assess the dropout rate using values of [0.3, 0.5, 0.7].  By plotting 
accuracy and loss curves for these variables, it is theoretically possible to pinpoint the optimal learning 

rate. When the learning rate is set to 0.01, the model tends to underfit, as evidenced by the non-linear 

relationship between training accuracy, test accuracy, training loss rate, and test loss rate. Figures 1, 2, 
and 3 show the accuracy and loss curves obtained when the learning rate is set to 0.01. 
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Figure 1. the curve of accuracy and loss(LR:0.01,Dropout:0.3) 

 

Figure 2. the curve of accuracy and loss(LR:0.01,Dropout:0.5). 

 

Figure 3. the curve of accuracy and loss(LR:0.01,Dropout:0.7). 

With a learning rate of 0.001, there is a gradual increase in both test and training accuracy, initially 

rapid then slower, while the test and training loss rates decrease and then increase. This suggests that 
the learning rate is still too high, which could lead to overfitting and necessitate further reduction. 

Figures 4, 5, and 6 show the accuracy and loss curves obtained when the learning rate is set to 0.001. 
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Figure 4. the curve of accuracy and loss(LR:0.001,Dropout:0.3). 

 
Figure 5. the curve of accuracy and loss(LR:0.001,Dropout:0.5). 

 

Figure 6. the curve of accuracy and loss(LR:0.001,Dropout:0.7). 

At a learning rate of 0.0001, both training accuracy and test accuracy exhibit a trend of initially rapid 

improvement followed by a slower increase. Figures 7, 8, and 9 show the accuracy and loss curves 

obtained when the learning rate is set to 0.0001. 
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Figure 7. the curve of accuracy and loss(LR:0.0001,Dropout:0.3). 

 

Figure 8. the curve of accuracy and loss(LR:0.0001,Dropout:0.5). 

 

Figure 9. the curve of accuracy and loss(LR:0.0001,Dropout:0.7). 

Similarly, the training and test loss rates show a decreasing trend, first rapid and then gradual, with 

the overall curve appearing relatively smooth. This suggests that a learning rate of 0.0001 is more 

appropriate, as it avoids overfitting and underfitting issues and provides better training results. When 
evaluating dropout rates with the optimal learning rate of 0.0001, the results across different dropout 

settings exhibit similar trends. The training and test accuracies show an initial rapid increase followed 

by a slower growth, while the training and test loss rates exhibit a decreasing trend initially rapid and 

then slow. 
 Observe the previously provided curves for learning rate 0.0001 with dropout rates of 0.3, 0.5, and 

0.7, shown in Figures 7, 8, and 9, respectively. Since changes in dropout rate do not intuitively affect 

overall optimization levels, it suggests that under the optimal learning rate, varying dropout rates have 
a less pronounced impact on model performance. The curve appears smoothest with a dropout rate of 

0.5, indicating that the model performs best with this dropout rate when using a learning rate of 0.0001. 

The batch size and the number of epochs are the hyperparameters under adjustment in the current 
analysis.  After setting the group's hyperparameters, which include a learning rate of 0.0001 and a 
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dropout rate of 0.5, the focus shifts to fine-tuning these specific parameters. Epochs represent the number 

of complete passes through the training dataset. If the dataset is used E times during training, the model 

is said to have undergone E epochs. The number of epochs significantly influences the model's training 
duration, accuracy, potential overfitting, convergence speed, and the consumption of computational 

resources. The number of epochs is a crucial hyperparameter that influences the training duration and 

the risk of overfitting. Early stopping is commonly used to prevent overfitting by halting training when 
performance on a validation set starts to degrade[11].Increasing the number of epochs generally leads 

to better performance on the training data, but if not monitored carefully, it may lead to overfitting where 

the model performs poorly on unseen data"[12]. Excessive epochs can lead to overfitting and inefficient 

use of resources, while too few epochs may result in underfitting and suboptimal model performance. 
At the current stage, the batch size remains fixed at 64.  

With an epoch count of 10, the program completes the training in approximately 15 minutes. During 

this period, both the training accuracy and test accuracy show an increasing trend, initially rapid and 
then slower. Specifically, the training accuracy fluctuates between 0.35 and 0.75, while the test accuracy 

ranges from 0.50 to 0.70. Conversely, the loss rate decreases over time, first rapidly and then more 

gradually. The training loss rate ranges from 0 to 1.8, and the test loss rate spans from 0.8 to 1.4.Figure 
10 shows the image results. 

 

Figure 10. the curve of accuracy and loss(the number of epochs:10). 

With the epoch count increased to 50, the training duration extends to about one hour and forty 

minutes. Initially, before reaching epoch 10, both the training and test accuracies rise steadily, although 
the rate of increase slows down over time. After epoch 10, the test accuracy fluctuates around 0.7, while 

the training accuracy continues to increase, reaching up to 0.9. The loss rates exhibit a different pattern 

compared to epoch 10; the training loss rate decreases from 1.8 to approximately 0.2, approaching zero. 
However, the test loss rate decreases initially but starts to rise after epoch 10, peaking at around 1.4 

before epoch 40 and then increasing further. This indicates overfitting beyond epoch 10, suggesting that 

an optimal epoch setting would be around 10. Figure 10 shows the image results.Given that training 

time can be lengthy and overfitting becomes evident with higher epochs, testing with 100 epochs may 
not be necessary.  

 

Figure 11. the curve of accuracy and loss(the number of epochs:50). 
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The impact of batch size on the model manifests in aspects such as training stability, training speed, 

model generalization, memory usage, and the effectiveness of the optimizer. Larger batch sizes generally 

improve training speed but may lead to less stable generalization compared to smaller batch sizes, which 
often offer better generalization performance[13]. The batch size choice has an impact on training 

stability and speed.  Smaller batch sizes tend to provide more accurate estimates of the gradient but 

require more iterations to converge"[14]. Smaller batch sizes often enhance generalization but result in 
slower training, while larger batch sizes can accelerate training but may reduce generalization and 

increase memory demands. Testing with batch sizes of 32, 64, and 128 at an optimal epoch count of 10 

reveals similar trends across the three data sets. Specifically, training and test accuracy show an 

increasing trend, initially rapid and then slowing, while training and test loss rates exhibit a decreasing 
trend, first rapidly and then more slowly.  

Comparing the results: For a batch size of 32: Training accuracy ranges from 0.35 to 0.75, test 

accuracy from 0.50 to 0.70, training loss rate from 0.6 to 1.7, and test loss rate from 0.8 to 1.4.Figure 12 
shows the image results. 

 

Figure 12. the curve of accuracy and loss(batch size:32). 

For a batch size of 64: training accuracy ranges from 0.35 to 0.70, test accuracy from 0.45 to 0.70, 
training loss rate from 0.8 to 1.8, and test loss rate from 0.8 to 1.6.Figure 13 shows the image results.  

 

Figure 13. the curve of accuracy and loss(batch size:64). 

For a batch size of 128: training accuracy ranges from 0.30 to 0.70, test accuracy from 0.45 to 0.70, 
training loss rate from 0.8 to 1.9, and test loss rate from 0.8 to 1.5.Figure 14 shows the image results. 
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Figure 14. the curve of accuracy and loss(batch size:128). 

Overall, variations in batch size result in only slight changes in accuracy and loss rates. This suggests 
that batch size has a minor effect on the model's overall optimization, though a batch size of 32 might 

offer a slight improvement. Moreover, batch normalization can mitigate some of the challenges 

associated with varying batch sizes, including those related to gradient stability and model 
generalization" [15]. Interestingly, setting the epoch count to 10 appears to be insufficient, suggesting 

the need to increase the dataset size for practical applications. 

4.  Conclusion 

In general, our group's project centers on the topic of "image feature extraction using convolutional 
neural networks (CNNs)." During the course of this project, we explored a range of hyperparameters 

that influence the optimization of CNNs, ultimately narrowing our focus to the learning rate and dropout 

rate. Based on our findings, I conducted additional tests to assess the impact of batch size and epoch 
number, using the group's data as a reference. Utilizing the CIFAR-10 dataset, we methodically 

determined the optimal learning rate and dropout rate. We rigorously analyzed how these 

hyperparameters affect various performance metrics of the model, including training accuracy, test 

accuracy, training loss rate, and test loss rate across different settings. Our experiments consistently 
demonstrated that the model achieves its best performance with a learning rate set to 0.0001 and a 

dropout rate of 0.5. In addition to these findings, I observed that batch size had a relatively minor impact 

on overall model optimization. However, a slight improvement was noted when the batch size was set 
to 32. Furthermore, as the number of epochs increased, the model showed a tendency toward overfitting. 

To mitigate this, I recommend setting the number of epochs to 10, as this balance helps avoid 

overtraining while also conserving computational resources. It is important to note that setting the epoch 
number too low can result in insufficient training passes, which might hinder a thorough analysis of 

other hyperparameters. Therefore, adjusting the epoch number according to the specific requirements of 

the dataset and model is crucial. Through these strategic adjustments, we have successfully optimized 

the model's performance, achieving a more effective feature extraction capability. 
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