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Abstract. Optical flow estimation is a hot topic that significantly impacts the development of 

the computer vision field, especially in pattern recognition. With advancements in artificial 

intelligence technologies, deep learning has seemingly opened up a new path for optical flow 

estimation. This paper focuses on four of the most influential deep learning-based models: the 

FlowNet series, the PWC-Net series, the RAFT series, and the SPyNet series. Each category 

includes representative models that showcase subsequent improvements. Firstly, this paper 

analyzes the neural convolutional network architecture and design of the basic models in each 

category. Following this, the optimization principles behind the improved versions of these 

models are explored. Finally, the strengths and weaknesses of these models by evaluating their 

Average Endpoint Error (AEE) results across various datasets are summarized. The paper 
concludes with an overall summary of the findings, providing insights into the progress and 

future directions of optical flow estimation in the context of deep learning. 
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1.  Introduction 

Optical Flow estimation is a frequently discussed topic. Optical flow method is still widely used in 

computer vision, image processing and other fields, including motion detection, object cutting, collision 
time calculation, motion compensation coding and etc. However, it is not well known to the public 

because it is not easy to explicitly present in applications. As the computer vision community shifts from 

image understanding to video understanding, people pay more and more attention to the research and 
application of video. As a traditional Method to estimate the motion direction of objects in video, optical 

flow estimation is mainly based on brightness constancy and small motion, among which the most 

representative methods are Lucas-Kanade Method and Horn-Schunck Method respectively. Limited by 
the academic level and the development of hardware and software at that time, the efficiency, robustness 

and accuracy of these traditional methods are still lacking. First, its computational complexity is high, 

especially when dealing with large-scale image or video data, it may encounter computational efficiency 

problems. Second, the optical flow method is more sensitive to regions with discontinuous noise and 
motion, and the wrong estimation of these regions may affect the accuracy of the entire optical flow 

field.  

Fortunately, with the progress of technology, the successful application of artificial intelligence 
technology in many fields such as computer vision has led many scholars to focus on deep learning and 

try to explore ideas based on deep learning. With the introduction of FlowNet in 2015, an algorithm that 

marks a major breakthrough in the field of optical flow estimation, many deep-learn-based optical 
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estimation algorithms have emerged successively. SPYNet (Spatial Pyramid) algorithm and PWC-Net 

algorithm. In addition, there are many valuable algorithms based on the above improved algorithms, 

such as LiteFlowNet algorithm, FlowNet2.0 algorithm and IRR-PWC algorithm. Many algorithms 
provide a variety of options for optical flow estimation. At present, there are not enough literature on 

the analysis of algorithms based on artificial intelligence, and the analysis of literature focusing on the 

advantages and disadvantages of various algorithms based on deep-learning is not thorough enough.  
This paper summarizes the methods, advantages and disadvantages of existing mainstream 

algorithms based on deep-learning, analyzes the potential development direction in the future and the 

main problems urgently needed to be solved. After sorting out and summarizing relevant literature, this 

paper divides the solutions to optical flow estimation based on deep learning into several categories as 
shown in the figure 1. 

 

Figure 1. Classification of the mainstream optical flow estimation models based on deep learning 

(Photo/Picture credit : Original ) 

2.  FlowNet model 

2.1.  The principle of FlowNet 

FlowNet is a convolutional neural network (CNN) for optical flow estimation, proposed by Dosovitskiy 
et al. [1].The model is trained in an end-to-end manner as an alternative to traditional methods.Trained 

with a large amount of composite data such as Flying Chairs, the model was able to adjust network 

parameters through backpropagation and gradient descent, learning to extract motion information from 

image pairs. The FlowNet model refines layer by layer through layer by layer sampling and 
deconvolution, and finally obtains high-resolution optical flow prediction (Figure 2). 

 
(a) 
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(b) 

Figure 2. The two network architectures: FlowNetSimple (a) and FlowNetCorr (b) [1]. 

2.2.  Improved model based on FlowNet 
Given that FlowNet was originally an early model that was structurally easy to expand, the potential for 

subsequent improvements is huge. There are some successful improvement cases in changing 

supervision mode, convolutional neural network architecture and algorithm. 
UnFlow is an unsupervised optical flow estimation model proposed by Meister et al in 2018 to solve 

the problem of dependence on large supervised data sets for optical flow estimation tasks [2]. The 

network architecture of UnFlow is largely inherited from FlowNet. Both of them adopt the architecture 

based on convolutional neural networks, and the processing methods are similar. UnFlow proposes to 
estimate optical flow through unsupervised learning, which is the key innovation, thereby reducing the 

reliance on synthetic data and enhancing its generalization ability in real-world scenarios. 

Unflow's self-supervised learning pattern reduces its reliance on labeled data. However, it does not 
improve the estimation accuracy of FlowNet. FlowNet2.0 is also an improved version of FlowNet, 

which was basically based on structure of FlowNet, aiming to improve estimation accuracy [3]. Firstly, 

The most significant innovation in FlowNet2.0 is its stacked architecture, cascading multiple sub-
networks. This design is to make each network refine the optical flow predictions produced by the 

previous network, leading to progressively more accurate estimations. Secondly, to adjust the optical 

flow estimation at different stages, FlowNet2.0 employed a variety of data augmentation techniques 

during training. These included random cropping, scaling, rotation, and color augmentations. By 
introducing these variations, the network was exposed to a broader range of motion patterns, lighting 

conditions, and object sizes during training. In addition, FlowNet2.0 proposes a residual learning 

mechanism to further improve the performance of the model by learning the difference between the 
current predicted result and the real optical flow.  

LiteFlowNet, designed from the perspective of power consumption, which is different from the ideas 

of Unflow and FlowNet2.0, is an efficient optical flow estimation network designed with a focus on 

reducing computation while maintaining high accuracy, which gives it good applicability in resource-
constrained environments [4].The design concept and architecture of LiteFlowNet is inspired by the 

FlowNet family, which uses a multi-level pyramid structure to gradually refine the optical flow 

estimation.When the optical flow is refined, the edge sensing module is added, which can consider the 
edge features of the image when estimating the optical flow, helping to reduce the error of the edge 

region. 

3.  PWC-Net model 

3.1.  The principle of PWC-Net model 

PWC-Net is an excellent model that uses convolutional neural networks to extract features from cost 

bodies for optical flow estimation and balances efficiency and accuracy [5].The key design feature is to 
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construct a multi-level image pyramid to deal with optical flow estimation. The input image pair (I1, I2) 

is passed through a convolutional neural network to extract feature pyramids at multiple resolutions. 

Starting from the lowest resolution level, the estimated optical flow from the previous layer is used to 
warp the feature map of I2. This warping aligns the features of I2 with those of I1, helping to reduce the 

difference between the two and make the flow estimation more accurate. A cost volume is constructed 

by comparing the warped features of I2 with the features of I1. The cost volume represents the matching 
costs for different pixel displacements and serves as a key input for flow estimation. This is typically 

done by computing the correlation or inner product between feature vectors. At each pyramid level, a 

small convolutional neural network (Flow Estimation Network) uses the cost volume and contextual 

features to estimate the optical flow for that resolution. The flow is then refined at higher resolutions. 
This iterative process gradually improves the accuracy of the flow field, starting from a coarse flow 

estimate at low resolution to a finer estimate at high resolution. Figure 3 shows the PWC-Net warps 

features of the second image using the upsampled flow, computes a cost volume, and process the cost 
volume using CNNs. Both post-processing and context network are optional in each system. The arrows 

indicate the direction of flow estimation and pyramids are constructed in the opposite direction. Please 

refer to the text for details about the network 

 

Figure 3. Feature pyramid and refinement at one pyramid level by PWC-Net. [5]. 

3.2.  Improved models based on PWC-Net 

PWC-Net is a milestone model in the field of optical flow estimation because it effectively introduces a 

multi-level pyramid structure on the basis of convolutional neural network. Therefore, in addition to the 
improvement ideas mentioned above in FlowNet, there are also some ideas aimed at improving the 

multi-level pyramid structure, especially for the local data dependency problem of PWC-Net. 

The reliance on labeled data when training PWC-Net models is a noteworthy issue, and some models 
have improved the problem by changing the supervision mode. DDFlow and SelFlow are good examples, 

both of which learn through a self-supervised pattern. DDFlow is an self-supervised learning model for 

optical flow estimation [6]. Its network architecture is developed on the basis of PWC-Net, and an 

innovative double-ended supervision framework is proposed to effectively reduce the errors caused by 
occlusion and motion ambiguity in optical flow field. DDFlow algorithms also use pseudo-supervised 

data instead of real labels, avoiding the need to manually label data, and can be trained using large 

amounts of unlabeled data. 
SelfFlow, of which its improvements are similar to DDFlow, is a self-supervised learning model, 

which relies on the geometric relationship between images for optical flow estimation [7]. By 
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constructing self-supervised loss function, dependence on real labeled optical flow is avoided. The 

Selflow model uses convolutional neural network to extract the feature representation of the image and 

feed it into the optical flow estimation network to predict the optical flow between the images.Then the 
error of image reconstruction is optimized. Finally, the consistency between forward optical flow and 

reverse optical flow is used to constrain optical flow prediction. A multi-scale mechanism is used to 

optimize optical flow prediction at different resolution levels. 
The common problems with DDFlow, Selflow, and PWC-Net is that estimations are not accurate 

enough, even though we know Selflow is doing its best, especially when confronting occlusions and 

luminosity variations. The improvement of IRR-PWC is mainly regarding the accuracy, particularly in 

the case of more complex motion [8]. It shares similar designs in features extraction and cost volume 
construction, and introduces the idea of iterative residual optimization on this basis. A deep 

convolutional network is used to extract the multi-level pyramid features of the input image to improve 

the optical flow estimation. For each pyramid feature, the optical flow estimation module is used to 
roughly estimate and refine the optical flow field layer by layer. The algorithm introduces an iterative 

residual optimization module to gradually correct the previously estimated optical flow.Each iteration 

is optimized based on the error (residual) of the previous estimate, generating a new optical flow 
prediction. 

4.  Recurrent All-Pairs Field Transforms (RAFT) model 

4.1.  The principle of RAFT 

RAFT model is a deep learning method for optical flow estimation that introduces a deep convolutional 
neural network [9]. RAFT uses a CNN encoder to extract features from two input frames, generating 

high-resolution feature maps. Each pixel corresponds to a high-dimensional feature vector, which will 

be used for subsequent optical flow estimation. The model computes the similarity between all feature 
points from both frames, constructing a 4D cost volume that records the matching cost for every pixel 

with all possible pixels in the other frame. This ensures that the model can identify the best matches 

between the two images. Then an initial rough optical flow field is generated, typically initialized to 

zero optical flow, assuming no motion between the frames at the start. The Recurrent Update Module 
(using GRU) iteratively refines the optical flow estimate. Each iteration combines the current optical 

flow estimation with the cost volume and feature maps, progressively correcting the flow field. This 

process is repeated multiple times, gradually approaching the true optical flow. Before final output, the 
optical flow field undergoes bilinear interpolation for fine-tuning, capturing subtle motion changes and 

enhancing the overall precision (Figure 4). 

 

Figure 4. RAFT model [9] 
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4.2.   Improved models based on RAFT 

The RAFT model is known for its exaggerated estimation accuracy but this does not mean that it has no 

potential for improvement as its computing cost and dependence on local correlation features remain 
problematic. The following two models effectively improve RAFT from these two aspects. 

GMA reduces the dependence on local pixel correlation through Global Motion Aggregation, which 

is an important improvement over RAFT model [10]. The core idea is to introduce Global Motion 
Aggregation on the basis of RAFT model to capture global motion information. GMA calculates the 

global similarity between each pixel and all other pixels in the image, forming a global attention matrix, 

allowing the model to capture both local and global motion information. By aggregating motion cues 

from across the entire image, GMA can better estimate optical flow in challenging scenarios, such as 
large object motions or complex motion patterns. 

ARFlow's approach to improvement is slightly different from GMA's. Augmented Reality Flow 

(ARFlow) is a model for optical flow estimation [11]. Data enhancement and regularization technologies 
are added to RAFT model, and self-supervised learning and robustness improvements are introduced. 

ARFlow introduces data augmentation techniques during training, such as spatial transformations 

(scaling, cropping, and rotation) applied to the input images. This enables the model to learn motion 
consistency across varying perspectives and transformations. Another key innovation in ARFlow is the 

introduction of a cycle consistency loss, which ensures that the optical flow estimation remains 

consistent when computing forward and backward flow.  

5.  SPyNet model 

SPyNet is a deep learning model for optical flow estimation, proposed in 2017, that uses a pyramid-like 

architecture for step-by-step optical flow estimation [12]. Although SPyNet itself was a relatively early 

model for optical flow estimation, its design philosophy laid the foundation for a series of subsequent 
improved models, with PWC-Net and LiteFlowNet in particular making significant progress on its 

foundation.SPyNet is also widely used in more complex models, such as some of the design inspiration 

for RAFT, reflecting the importance of SPyNet in the field of optical flow estimation. So it is analyzed 

as a separate part. 
The core of SPyNet's design is to estimate optical flow step by step through an image pyramid. This 

method means that the input image pairs are progressively narrowed down to pyramid levels of different 

resolutions, each level refining the lower resolution optical flow estimates. The input image is first 
downsampled through the Gaussian pyramid, and each scale estimates the optical flow independently. 

Second, at the bottom of the pyramid, the network estimates optical flow from the smallest resolution. 

This estimate is then upsampled to a higher resolution and further refined at a higher level. This process 
is carried out layer by layer until the original resolution (Figure 5). A relatively small CNN was then 

used to estimate the optical flow, which has a smaller model scale compared to other more complex 

optical flow models such as FlowNet and RAFT. 
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Figure 5. Inference in a 3-Level Pyramid Network: The network G0 computes the residual flow v0 at 

the highest level of the pyramid (smallest image) using the low resolution images {I01,I02}. At each 

pyramid level, the network Gk computes a residual flow vk which propagates to each of the next lower 

levels of the pyramid in turn to finally obtain the flow V2 at the highest resolution [12]. 

6.  Analysis of advantages and disadvantages of various models 

The advantages and disadvantages of various optical flow estimation models mentioned above are 
analyzed and summarized, which mainly covers the evaluation of computing speed, computing cost, 

efficiency, estimation accuracy and complexity of architecture (Table 1). 

Table 1. Advantages and disadvantages of various optical flow estimation models 

Category Model Advantages Disadvantages 

FlowNet-
based 

FlowNet 

1. Fast speed, real-time estimation of optical 
flow can be achieved 

2. Relatively simple  structure which is easy to 
do expansion 

1. The accuracy is relatively low. It’s 
difficult to deal with complex, occluded 

and small movements 
2. Poor performance  at dealing with 

big motion 

UnFlow 1. A wide range of application scenarios 

1. Poor performance when processing 
complex scenes or  fast-moving objects 
2. Not robust enough when dealing 
with noise, luminosity variations or 

dynamic objects 

LiteFlowNet 

1. More efficient and being more suitable for   
devices with limited resources 

2. Higher accuracy in processing small objects 
and complex motion scenes 

1. Its structure is relatively complex, 
and the process of model training and 

parameter adjustment is relatively 

complex 
2. Poor performance when dealing 

large motions 

FlowNet2.0 

1. High accuracy 
2. Compared with the original FlowNet, it can 
handle complex motion scenes better, especially 
in high resolution scenes and detail processing 

1. More stringent requirements on 
computing costs and memory usage 

2. The running time is long, and it is 
difficult to achieve real-time processing 

PWC-
Net-based 

PWC-Net 

1. Able to handle large range of motion 
effectively 

2. Able to  do the estimation in local area and 

avoid the high calculation cost caused by global 
calculation 

1. Weak perception of global motion 

and poor performance in scenes with 
long distance movements or large 

parallax changes 
2. Poor performance in motion 

estimation of small objects 
3. Unable to deal stably with 

occlusion and changes in lighting 

DDFlow 

1. There is no need for large-scale labeled data 

sets, which reduces the dependence on labeled 
data and makes it more widely applicable 
2. Computationally efficient, suitable for 

processing large data sets or devices with limited 
resources 

1.Relatively low accuracy 
2. Be prone to bias when dealing with 
luminosity variation, noise or irregular 

texture. 
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IRR-PWC 1. Better performance in more complex scenes 
1. The introduced iterative update 

mechanism increases the calculation 

cost 

Selflow 

1. Good performances on large-scale data sets, 
ADAPTS to real-world applications without 

labels, and reduces training costs 
2. Robustness improved for occlusion and 

dynamic scenes 

1. Accuracy is lower than most 
supervised learning models, and 

estimation accuracy is lower than IRR-
PWC and FlowNet2.0 (even with 

improvements) when dealing with fast 
motion, complex lighting and occlusion 

areas. 

RAFT-
based 

RAFT 

1. Able to accurately capture subtle changes in 
the optical flow field 

2. All pixel pairs in the scene can be 
comprehensively compared, thus enhancing the 

global perception of the model and performing 
well in precision. 

1. Large computing costs and memory 
requirements, which makes RAFT 
unsuitable for resource-constrained 

devices or real-time application 
scenarios. 

2. The number of iteration updates of 
RAFT is fixed and cannot be 

dynamically adjusted according to 

specific scenarios. In complex motion 
scenarios, the fixed number of iterative 
steps may not be enough to ensure the 

convergence of the model, thus 
affecting the accuracy of optical flow 

estimation. 

GMA 

1. Able to capture the large range and complex 
movement in the scene 

2. Able to deal with the estimation of optical 
flow in the blocked area and avoid the estimation 

error caused by local motion information. 

1.High computing costs and memory 
requirements. 

2.More complex structure than RAFT , 

which increases the complexity of 
model design and the difficulty of 

training. 

ARFlow 

1. Little reliance on large-scale labeled data 
sets, being suitable for data-scarce scenarios, low 

training costs. 
2. Improved accuracy and robustness of the 
model in dealing with complex motion scenes. 

1. Compared with supervised models 
of the same period, the estimation 

accuracy is still insufficient 
2. When the illumination conditions 

change significantly, the accuracy of the 

optical flow estimation may decrease 

SPyNet 
 
 

1. Making estimation of motions at different 
scales in a better efficiency 

2. The network structure is relatively simple, the 
number of parameters is small, so the reasoning 

speed is fast, the computing resource 
requirements are low, and it is more suitable for 

running on resource-limited devices. 

1. The handling of very large 
displacement scenarios is poor. Its 
pyramid level is limited and cannot 
effectively capture a large range of 

motion details. 
2. Unable to effectively capture fine 
motion and high-frequency details in 

complex scenes, resulting in poor 
performance in complex scenes. 

3. It is easy to make errors in the 
estimation of optical flow for complex 

illumination changes or non-rigid object 
motion. 

4. If the estimate at the lower 
resolution layer is not accurate enough, 

the estimate at the higher resolution 
level will be affected, resulting in error 

accumulation 

6.1.  Analysis of results 
The estimation results of various large models of optical flow estimation mentioned above, including 

AEE (Average endpoint error) under Sintel Final datasets and Fl-all under KITTI 15 datasets. The 

Table 1. (continued). 
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smaller the values of AEE and Fl-all, the more accurate the estimation of the model '-' indicates that the 

model has not been tested on this datasets (Table 2). 

Table 2. The estimation results of various large models  

Category Model Sintel Final AEE KITTI 15 Fl-all 

FlowNet-based 

FlowNetS 7.22 - 

FlowNetC 7.88 - 

UnFlow (C) 10.22 11.11% 

LiteFlowNet 6.09 10.24% 
FlowNet2.0 5.74 11.48% 

PWC-Net-based 

PWC-Net 5.04 9.60% 

DDFlow 7.40 14.29% 

IRR-PWC 4.58 7.65% 
Selflow 6.57 14.19% 

RAFT-based 

RAFT 2.86 5.27% 

GMA 2.47 4.93% 
ARFlow 5.67 11.79% 

SPyNet SPyNet 8.43 - 

 

The first and fourth categories of models are relatively early, aiming to demonstrate the feasibility of 
using convolutional neural networks for optical flow estimation. Although their average AEEs on the 

Sintel Final dataset are higher (7.43 and 8.43 respectively), they laid a foundation for subsequent 

research. Improvements to FlowNet include UnFlow (unsupervised learning), FlowNet2.0 (improved 
accuracy to 5.74 AEE), and LiteFlowNet (balancing computational cost and accuracy). SPyNet, as an 

early lightweight model, focuses on low computational cost but has a higher AEE. 

The second category of models uses feature pyramid structures and cost volume to combine sparse 

and multi-scale representations. PWC-Net demonstrates a good balance between accuracy and 
efficiency (Sintel: 5.04 AEE, KITTI 15: 9.60% Fl-all). IRR-PWC further improves accuracy through a 

recursive residual module (Sintel: 4.58 AEE, KITTI 15: 7.65% Fl-all). DDFlow and Selflow use self-

supervised learning to reduce dependency on labeled data, but with lower accuracy (Sintel: 7.40/6.57 
AEE, KITTI 15: 14.29%/14.19% Fl-all). 

The third category represents the latest advancements, with RAFT setting a high-accuracy 

benchmark (Sintel: 2.86 AEE, KITTI 15: 5.27% Fl-all). GMA improves large motion handling by 
incorporating a global motion aggregation module (Sintel: 2.47 AEE, KITTI 15: 4.93% Fl-all). ARFlow 

attempts to integrate unsupervised learning, though its accuracy is slightly lower than RAFT and GMA, 

it still outperforms previous unsupervised and some supervised models. 

Differences in AEE results across models reflect trade-offs between accuracy, computational 
efficiency, and application scenarios. Modern models like RAFT and GMA lead in accuracy but require 

more computational resources, while SPyNet and LiteFlowNet are better suited for scenarios with 

limited resources or real-time computation needs. 

7.  Conclusion 

This paper discusses many models based on deep learning, and summarizes the advantages and 

disadvantages of them by analyzing their architectures, design concepts and AEE results on various 
datasets. Nowadays, various deep -learning-based models have greatly promoted the development of 

optical flow estimation. Due to the high efficiency of deep learning, although the accuracy of each model 

is slightly different, it generally performs very well, and the mainstream models with outstanding 

accuracy are RAFT and FlowNet2.0. On this basis, there are some models sacrifice some accuracy in 
exchange for the reduction of resource requirements, striking a equilibrium between performance and 
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efficiency, such as LiteFlowNet, DDFlow, SPyNet, etc. However, it is clear that the optical flow 

estimation field still has great prospects. First of all, some models still rely on the assumption of 

luminosity consistency, local feature extraction, etc., leading to poor performance in the face of common 
issues about occlusion, big motion, noise, and complex luminosity variations. Secondly, for 

unsupervised or self-supervised models, they cannot enjoy low reliance on labeled data to make them 

more widely applicable while maintaining high accuracy of estimation. Selflow inspired us to introduce 
some loss functions to improve accuracy.Therefore, it is hoped that future researchers can further 

improve the underlying algorithm of optical flow estimation models to deal with complex situations in 

the real world, and continue to study how to improve the estimation accuracy of unsupervised models 

as much as possible 
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