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Abstract. With the swift advancements in computing technology and artificial intelligence, the 
field of image processing has undergone profound changes. As the key link of information 

extraction, image features play a central role in computer vision tasks. Conventional methods 

like SIFT and SURF are often utilized in vision problems owing to their robustness and 

invariance. In contrast, deep learning algorithms, such as Superpoint and D2-Net, show greater 

adaptability and robustness in complex environments. In this study, we comprehensively 

evaluate the performance of the classical algorithms SIFT and SURF, alongside the deep learning 

methods Superpoint and D2-Net, across various scenarios, including repetitive patterns, cluttered 

backgrounds, and strong illumination conditions The experimental results show that SIFT and 

SURF perform stably when dealing with simple environments, while Superpoint and D2-Net 

demonstrate stronger adaptability and robustness in complex scenes, especially in terms of 

matching efficiency, average matching distance and consistency of feature distribution. Through 

comprehensive analysis and experimental verification, this paper reveals the effectiveness and 
limitations of the algorithms in different environments, providing a scientific basis for the 

selection of algorithms in practical computer vision tasks. 

Keywords: Feature detection, feature matching, computer vision, deep learning. 

1.  Introduction 

In the past decades, images carry complex and rich information in a simple form. As artificial 

intelligence and computer technology continue to evolve at a rapid pace, deep learning has been 
progressively brought into the image processing industry and has produced impressive results [1, 2]. 

The goal of computer vision, a significant area of computer science, is to empower devices and systems 

to recognize and process visual inputs like images, extracting useful information and acting or making 

decisions in response [3]. In this process, image features play a crucial role as the basic units of 
information. Consequently, picture feature detection and matching algorithms have emerged as 

fundamental technologies in the domain of computer vision. 

Within this framework, many feature detection and matching algorithms have been introduced and 
are widely utilized. Among them, SIFT (scale-invariant feature transform) and SURF (speed-up robust 

feature), as the early classical algorithms, occupy an important position in various computer vision tasks 

by virtue of their invariance to feature stability, scale and rotation [4]. However, with the development 
and application of deep learning technology, the traditional hand-designed feature detection and 
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matching algorithms gradually reveal their limitations, especially when they perform poorly in dealing 

with complex scenes and diverse visual tasks. To solve these problems, deep learning-based feature 

detection and matching algorithms, such as Superpoint and D2-Net, have emerged, which show 

significant advantages over traditional hand-designed feature detection and matching algorithms when 
dealing with complex and irregular scenes (e.g., occlusion and strong illumination changes). By learning 

rich feature representations, these methods are able to adapt to a variety of variations and disturbances, 

thus improving the accuracy and robustness of matching [5, 6]. Even though an extensive amount of 
research has been done to thoroughly compare the performance of traditional algorithms like SIFT and 

SURF [4,7,8,9], there are still relatively few performance comparisons between classical algorithms and 

deep learning-based algorithms for feature detection and matching algorithms (e.g., Superpoint and D2-

Net) [10]. Therefore, this paper will fill this gap by focusing on comparing the performance of the 
classical algorithms SIFT and SURF with the deep learning methods Superpoint and D2-Net in different 

scenarios, and discussing in depth their applicability and advantages in modern computer vision tasks. 

2.  Related work 

2.1.  Classical feature detection and matching algorithms 

Among the early research in feature detection and matching, SIFT (Scale Invariant Feature Transform) 

and SURF (Speeded Up Robust Feature) are among the most influential algorithms. SIFT, originally 
developed by David Lowe in 1999, is a resilient feature identification technique that retains stability 

across scaling, rotation, and variations in illumination. SIFT is a robust feature detection algorithm that 

maintains stability under scaling, rotation and illumination changes, making it ideal for detecting 

keypoints in an image. The core idea of SIFT is to find local extrema as keypoints by constructing a 
scale space, and to compute feature descriptors for each keypoint. These descriptors are represented by 

high-dimensional vectors and are used to achieve feature matching between images [11]. However, SIFT 

is computationally intensive and less efficient especially when dealing with high resolution images, 
which becomes one of its main limitations [12]. 

The SURF algorithm, proposed in 2006, was optimized for the computational complexity of 

SIFT.SURF performs feature point detection by means of Hessian matrix determinant and accelerates 

the computation of the feature descriptors by using an integral map. SURF significantly improves 
computational efficiency while maintaining robustness to scale and rotation [13]. However, although 

SURF shows better speed and stability in regular scenes, the matching accuracy and robustness are still 

deficient in large view angle changes, strong occlusion, and complex dynamic scenes, especially when 
facing images with less texture or repetitive patterns, which are prone to mis-matching. 

These two algorithms have been commonly employed in image stitching assignments, especially in 

the generation of panoramas and seamless stitching of multiple images, where alignment and synthesis 
between images can be effectively achieved by extracting and matching feature points [14, 15]. However, 

traditional feature detection and matching methods are often difficult to cope with complex motion 

patterns and non-rigid deformations when dealing with dynamic scenes or drastic environmental 

changes, resulting in less than ideal stitching results. In addition, the matching performance of SIFT and 
SURF is significantly degraded when confronted with strong illumination changes or blurred images 

[16, 17]. 

2.2.  Deep learning based feature detection and matching algorithm 
The recent development of deep learning algorithms has advanced the domain of feature identification 

and matching. Superpoint is a comprehensive convolutional model utilizing self-supervised learning, 

capable of concurrently calculating pixel-level interest points and feature descriptors on whole pictures 
by training interest point detectors and descriptors. Superpoint introduces an adaptive method with 

multiple scales and multiple single responsiveness, which effectively improves the repeatability and 

cross-domain adaptation of interest point detection [5]. D2-Net, on the other hand, is a method that 

utilizes a single convolutional neural network to jointly achieve feature detection and dense feature 
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description, and is able to find reliable pixel-level correspondences under complex imaging conditions. 

By deferring detection to higher-level features, D2-Net extracts keypoints more consistently than 

traditional methods and can learn without additional labeling from large-scale structural reconstruction 

(SfM) data [6]. 
In this study, we systematically compare the performance of SIFT, SURF, Superpoint and D2-Net in 

different scenarios by comprehensively analyzing the advantages and disadvantages of classical feature 

detection algorithms and modern deep learning methods. This comparison is not just a simple evaluation 
of each algorithm, but an in-depth discussion of the effectiveness and limitations of each type of 

algorithm in practical applications compared with previous studies. In addition, this paper will consider 

the characteristics of specific application scenarios to reveal the performance differences of the 

algorithms in dealing with complex environments, so as to provide a more targeted reference for future 
research on feature detection and matching algorithms. Through this novel perspective, it aims to fill the 

gaps in existing research and promote the development of related fields. 

3.  Methodology 

3.1.  SIFT 

The core premise of the SIFT approach is to identify keypoints on a variety of scales and determine the 

orientation of them. The prominent characteristics identified by SIFT include distinctive locations that 
persist unaltered despite variations in illumination, affine transformations, and noises, encompassing 

corner points, boundary points, luminous points in dim regions, and obscure points in illuminated areas, 

among others. The prominent characteristics detected by SIFT are critical locations that remain 

unchanged despite alterations in light, affine transformations, and noise. Figure 1 shows the main steps 
of feature point detection and matching of SIFT [11, 18]. 

 

Figure 1. SIFT feature detection and matching process (Photo/Picture credit : Original) 

3.1.1.  Scale-space extrema detection The initial phase identifies unique characteristics by exploring the 

scale space with the Difference of Gaussian (DoG) function to detect prospective spots of interest that 

exhibit scale and orientation invariance. The image's scale space is denoted as L(x, y, σ) (1), created via 

convolutioning a variable scale Gaussian G(x, y, 𝜎) (2) with the input image I(x, y, 𝜎): 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)                                                       (1) 

G(x, y, 𝜎) =
1

2𝜋𝜎2
e

−
x2+y2

2𝜎2                                                            (2) 
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Critical points that are valid and robust are determined by detecting scale-space extrema from several 

Difference of Gaussians (DoGs) (Figure 2). D(𝑥, 𝑦, 𝜎)  is derived from the disparity between two 

contiguous scales differentiated by an ongoing multiplied factor k (3): 

 𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)  (3) 

 

Figure 2. Generation of Gaussian difference pyramid [19] 

3.1.2.  Key point positioning A comprehensive model was applied at each feature point to ascertain 

position and scale. Keypoints were chosen based on their stability measurements. 

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2                   (4) 

𝜃(𝑥, 𝑦) = tan−1 (
(L(x,y+1)−L(x,y−1))

(L(x+1,y)−L(x−1,y))
)                                               (5) 

3.1.3.  Keypoint descriptor Localized picture intensity variations were assessed at specific scales in the 

vicinity of each keypoint. These were transformed into representations that permitted substantial degrees 

of localized shape distortion and variations in illumination. 

3.2.  SURF 
SURF utilizes the concept of approximate simplification (DoG approximation in lieu of LoG) within 

SIFT, streamlining the Gaussian second-order differential template of the Hessian matrix through the 

integral map. Consequently, the image filtering via the template necessitates merely a few elementary 
addition and subtraction operations, which are unaffected by the dimensions of the filtering template. 

SURF is an enhanced and expedited variant of SIFT, optimizing computational speed while maintaining 

comparable performance in feature point detection [13]. SURF significantly outperforms SIFT in both 
speed and overall efficacy. The main steps of feature point detection and matching in SURF are [13, 20]: 

3.2.1.  Points of interest detection Feature point detection is accelerated by converting the original image 

into an integral image. The integral image represents the sum of all pixel intensities, which is calculated 

as: 

𝐼𝛴(𝑋) = ∑  𝑖≤𝑥
𝑖=0

∑  𝑗≤𝑦

𝑗=0
𝐼(𝑖, 𝑗)                                                       (6) 
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Based on the fundamental image, the sum of the luminance values of the pixels on any vertical 

rectangular region is calculated (Figure 3). 

 

Figure 3. Example of summing pixel grayscale values [21] 

The integral image is convolved using a box filter as an approximation of the Gaussian filter. The 
definition of the Hessian matrix is: 

ℋ(X, 𝜎) = [
Lxx(X, 𝜎) Lxy(X, 𝜎)

Lxy(X, 𝜎) Lyy(X, 𝜎)
]                                                     (7) 

3.2.2.  Point of interest description To maintain the rotational invariance of the image, the SURF 
determines repeatable directions for the points of interest. The response is computed in both x and y 

directions in a region of radius 6s using Haar wavelets with 4s side lengths and a sampling step size that 

depends on the scale s. The response is then computed in the x and y directions (Figure 4). 

 

Figure 4. Haar wavelet types used for SURF [21] 

Upon calculating the wavelet response, it is depicted as spatial points with a Gaussian weighting σ = 

2s, centered on the place of interest, with the horizontal and vertical response intensities serving as the 
respective horizontal and vertical coordinates. Subsequently, the peak value of the response sum is 

identified inside every sliding window (oriented at π/3), and the local direction vector is produced by 

aggregating the horizontal and vertical responses to ascertain the direction of the point of interest (Figure 
5). 

 

Figure 5. Direction assignment [21] 
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A square region constructed over the points of interest to extract the feature descriptors (Figure 6). 

 

Figure 6. Detail of the graffiti scene showing the size of the descriptor window at different scales [21] 

3.3.  Superpoint 

Superpoint is a self-supervised network framework that simultaneously detects keypoints and extracts 

descriptors. Compared with the classical algorithms SIFT and SURF, Superpoint introduces a 

monoimmunity adaptation strategy, which generates new training samples through multiple 
monoimmunity transformations to improve the re-detection rate and robustness of feature points. 

Although SIFT and SURF perform well in terms of scale and rotation invariance, they are susceptible 

to noise and illumination changes in complex scenes [5]. Comparatively, Superpoint's self-supervised 
learning approach makes it more stable in different contexts, especially in cross-domain tasks (e.g., 

migration from synthetic data to real scenes), showing more flexibility and robustness, making it a more 

competitive choice for modern computer vision applications. The main steps of feature point detection 
and matching in Superpoint are [5]: 

3.3.1.  Points of interest pre-training Create synthetic dataset Synthetic Shapes (simple graphics, small 

pixels, huge total number of points of interest, accurate points of interest) Build Superpoint network 

using synthetic dataset. Training results on the synthetic dataset Synthetic Shapes significantly 
outperform traditional interest point detectors (Figure 7) (FAST, etc.). 

 

Figure 7. Synthetic Pre-Training [5] 

3.3.2.  Self-monitoring labels Feature points are extracted from the selected dataset using MagicPoint, a 

detector trained in interest point pre-training. With this self-supervised dataset training, the obtained 
detections exhibit enhanced repeatability (Figure 8). Multiple transformations are performed for each 

image, and this approach effectively improves the repeatability of the detector and enhances the stability 

of feature point detection. 
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Figure 8. Self-Supervised Training Overview [5] 

3.3.3.  Joint training During the training process, the network first determines the truth values of the 

feature points on the real image set, while the truth values of the descriptors are generated by the network 
learning on its own. The deformed image is generated by single responsive transform to derive the 

relationship between the original image and the relevant feature points in the altered image. The loss 

function is used to calculate the distances between matching and non-matching points and optimize the 

network so that the descriptor distances for matching points are as small as possible and the distances 
for non-matching points are as large as possible. This process enables Superpoint to efficiently capture 

local features and optimize the similarity and differentiation of descriptors for efficient feature point 

matching (Figure 9). 

 

Figure 9. Superpoint Decoders [5] 

3.4.  D2-Net 
The essence of D2-Net lies in the simultaneous generation of feature point locations and descriptors 

through a unified convolutional neural network (CNN), whose architecture is based on the VGG16 

model, removing the fully-connected layer and focusing on feature extraction in the convolutional layer. 
By processing the feature map of the last convolutional layer, D2-Net realizes the joint learning of 

feature point detection and description (Figure 10 and figure 11) [6]. Compared with the classical 

algorithms SIFT and SURF, the dense descriptors generated by D2-Net provide richer information, 

which gives it an advantage when dealing with complex scenes, thus improving the accuracy and 
reliability of feature point detection. D2-Net's benefit over Superpoint, which employs a single network 
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for detection and description while segregating these activities into distinct branches, is its capability to 

jointly generate feature point locations and descriptors via a unified network architecture. This design 

enables D2-Net to optimize the utilization of features retrieved from the convolutional layer and 

strengthen the correlation among these features, hence enhancing the quality of matching between 
feature points and descriptors. The main steps of feature point detection and matching in D2-Net are [6, 

21]: 

 

Figure 10. Comparison between different approaches for feature detection and description [6] 

 

Figure 11. Proposed detect-and-describe (D2) network [6] 

Feature Map Generation and Descriptor Extraction 

The image I is fed into a convolutional neural network ℱ to obtain a three-dimensional tensor F, F ∈

ℝh×w×n. The descriptor dij = Fij is normalized: 

�̂�𝑖𝑗 = 𝑑𝑖𝑗/||𝑑𝑖𝑗||2                                                                (8) 

Feature point detection 

Define the two-dimensional response 𝐷𝑘=F::k, detect the feature points (i,j) by the local maximum 

condition , and compute the soft local maximum score 𝛼𝑖𝑗
𝑘 : 

𝛼𝑖𝑗
𝑘 =

exp(𝐷𝑖𝑗
𝑘 )

∑  
(𝑖′ ,𝑗′)∈𝒩(𝑖,𝑗)

exp (𝐷
𝑖′𝑗′
𝑘 )

                                                      (9) 

Combined scores and normalization 

Combining the local scores, define the overall score 𝛾ij: 

𝛾ij = 𝑚𝑎𝑥
k

 (𝛼
ij

k
𝛽

ij

k
)                                                              (10) 
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Normalization yields a soft detection score sij: 

sij = 𝛾ij/ ∑  
(i′,j′)

𝛾
i′j′

                                                           (11) 

Image Pyramid Construction 

Construct an image pyramid 𝐼𝜌 , extract feature maps at different resolutions, and fuse low-resolution 

features to high-resolution features: 

�̃�𝜌 = 𝐹𝜌 + ∑  𝛾<𝜌 𝐹𝛾.                                                      (12) 

4.  Experimentation 

4.1.  Image selection 
In this study, three distinct image datasets will be used to compare the performance of image matching 

algorithms. Each dataset targets specific challenging scenarios, allowing for the evaluation of the 

algorithms' effectiveness under varying conditions. 

First, images with repetitive patterns: This dataset tests the algorithm's performance when 
encountering repetitive structures. These images typically contain identical or similar textures, shapes, 

or color regions, providing an effective way to evaluate the robustness and accuracy of the algorithm 

(Figure 12). 

   

Figure 12. Repeating pattern dataset example(Photo/Picture credit : Original) 

Secondly, images with cluttered backgrounds: this dataset evaluates the algorithm's ability to match 
features in complex environments (Figure 13). These images contain detailed and noisy backgrounds 

that may interfere with feature extraction and matching, allowing for an assessment of the algorithm's 

stability in handling background interference. 

   

Figure 13. Clutter background dataset example (Photo/Picture credit : Original) 

Finally, images of strong lighting: the dataset will be used to analyze the performance of the 

algorithms under strong lighting conditions (Figure 14). These images may have problems such as 
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overexposure or shadows, and can effectively evaluate the algorithm's ability to adapt and accuracy 

under light changes. 

   

Figure 14. High light image dataset example (Photo/Picture credit : Original) 

With these three aspects of dataset selection, this study aims to provide a more in-depth basis for 

analyzing the performance of image matching algorithms. Each dataset has been carefully selected to 

ensure that its features challenge the limitations of existing algorithms and provide guidance for future 
improvements. 

4.2.  Experimental setup 

In this experiment, all input images were scaled to a uniform size (512 × 512 pixels) and grayscaled to 
ensure consistency in the processing. During the phase of keypoint detection, for the SIFT and SURF 

algorithms, the default detection thresholds were used and set to 0.04 and 400, respectively. for the 

Superpoint and D2-Net algorithms, their pre-trained models [22, 23] were used and the default 
parameters were not adjusted. For the feature matching algorithm, the Brute-Force Matcher (BFM) 

algorithm was used for feature point matching. 

4.3.  Evaluation metrics 

To comprehensively evaluate the performance of the image matching algorithms (SIFT, SURF, 
Superpoint, and D2-Net), this study selects four key metrics: number of matching points, matching 

efficiency, average matching distance, and spatial distribution entropy. These metrics are widely used 

to assess matching performance and accuracy, providing a multi-perspective evaluation of the 
algorithms and a foundation for analyzing experimental results and optimizing the algorithms. 

4.4.  Analysis of experimental results 

4.4.1.  Experiment 1-Images with repeating patterns The experimental results (Figure 15, Figure 16 and 
Table 1) show that D2-Net performs well in feature extraction and matching efficiency, with the number 

of feature points of 1574 and 1913, respectively, and the matching efficiency reaches 40.83%, and the 

spatial distribution entropy is high (6.9853 and 7.1388), which indicates that its feature points are 

uniformly distributed to capture the complexity of the scene effectively. In the experimental images, the 
feature points of D2-Net are widely distributed and cover the key details in the images, especially in the 

repeated pattern scene. 

In contrast, SURF achieves a matching efficiency of 33.60% and an average matching distance of 
just 0.29, indicating higher accuracy. However, its feature count and distribution uniformity are inferior 

to D2-Net. The experimental images reveal that SURF’s feature points are concentrated in specific areas, 

and while its accuracy is strong, the lack of uniform distribution impacts its performance in complex 

scenes. Both SIFT and Superpoint have relatively fewer features, with matching efficiency below 30%. 
The experimental images show sparse feature point distribution in complex scenes, limiting their 

coverage and applicability. 
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From an analytical perspective, D2-Net's superior performance is driven by its deep learning-based 

feature extraction, which captures complex image patterns and adapts well to challenging scenarios like 

repetitive patterns. In contrast, SURF, as a traditional algorithm, is less robust due to its reliance on 

hand-crafted features, though it achieves higher efficiency. SIFT and Superpoint fall behind D2-Net and 
SURF in both efficiency and accuracy, limited by their feature extraction methods. 

Overall, D2-Net excels in repetitive pattern scenarios, while SURF strikes a better balance between 

accuracy and efficiency. The experimental graphs clearly demonstrate each algorithm's applicability 
across different scenarios, offering a solid basis for selection. 

  

Figure 15. Example Test Images for the Repeating Pattern Dataset (Photo/Picture credit : Original) 

    

(a) Feature Detection with SIFT on Repeating 

Pattern Images 

(b) Feature Detection with SURF on Repeating 

Pattern Images 

  

(c) Feature Matching with SIFT on Repeating 

Pattern Images 

(d) Feature Matching with SURF on Repeating 

Pattern Images 

    

(e) Feature Detection with Superpoint on 

Repeating Pattern Images 

(f) Feature Detection with D2-Net on Repeating 

Pattern Images 
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(g) Feature Matching with Superpoint on 

Repeating Pattern Images 

(h) Feature Matching with D2-Net on Repeating 

Pattern Images 

Figure 16. The result of feature detection  and feature matching on the Repeating Pattern Dataset 

(Photo/Picture credit : Original) 

Table 1. Summary of SIFT, SURF, Superpoint, and D2-Net Performance on Repeating Pattern Images 

Method Features Matches 
Matching 

efficiency% 
Average matching 

distance 
Spatial distribution 

entropy 

SIFT 
314 

107 17.95 203.42 
3.7840 

878 3.8774 

SURF 
148 

105 33.60 0.29 
3.3187 

477 3.9278 

Superpoint 
261 

97 32.28 0.84 
4.2913 

340 4.4083 

D2-Net 
1574 

781 40.83 0.95 
6.9853 

1913 7.1388 

4.4.2.  Experiment 2 - Images with cluttered backgrounds The results (Figure 17, Figure 18 and table 2) 

show that SURF achieves the highest matching efficiency at 55.57%, with an average matching distance 
of 0.22, indicating strong accuracy. SuperPoint, while slightly more efficient (58.42%), extracts fewer 

features (465 and 449) compared to SURF, reflecting limitations in feature quantity. SIFT, despite 

extracting more features (1469 and 1985), has a lower efficiency of 40.13%, making it less suitable for 
complex scenes. D2-Net, with 45.57% efficiency, excels in feature quantity (2062 and 2342) and boasts 

the highest spatial distribution entropy (7.1541 and 7.2620), indicating a more even feature distribution. 

It captures complex structures well and offers broader coverage and robustness in challenging 
environments. 

In summary, SURF excels in both efficiency and accuracy, making it ideal for cluttered scenes. 

SuperPoint maintains high efficiency despite fewer features, while D2-Net shines in feature distribution 

and complexity handling, though with slightly lower efficiency. 
 

  

 

Figure 17. Example Test Images for the Clutter Background Dataset (Photo/Picture credit : Original) 

Proceedings of  CONF-MLA 2024 Workshop:  Neural  Computing and Applications 
DOI:  10.54254/2755-2721/105/2024TJ0068 

68 



 

 

    

(a) Feature Detection with SIFT on Clutter 

Background Images  

(b) Feature Detection with SURF on Clutter 

Background Images  

  

(c) Feature Matching with SIFT on Clutter 

Background Images 

(d) Feature Matching with SURF on Clutter 

Background Images 

    

(e) Feature Detection with Superpoint on Clutter 
Background Images 

(f) Feature Detection with D2-Net on Clutter 
Background Images 

  

(g) Feature Matching with Superpoint on Clutter 

Background Images 

(h) Feature Matching with D2-Net on Clutter 

Background Images 

Figure 18. The result of feature detection  and feature matching on the Clutter Background Dataset 
(Photo/Picture credit : Original) 
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Table 2. Summary of SIFT, SURF, Superpoint, and D2-Net Performance on Clutter Background Images 

Method Features Matches 
Matching 

efficiency % 

Average matching 

distance 

Spatial distribution 

entropy 

SIFT 
1469 

693 40.13 210.25 
4.1215 

1985 4.2910 

SURF 
904 

606 55.57 0.22 
4.1088 

1277 4.3255 

Superpoint 
465 

267 58.42 0.44 
4.3293 

449 4.2695 

D2-Net 
2062 

1114 45.57 0.68 
7.1541 

2342 7.2620 

4.4.3.  Experiment 3-Images under strong light intensity The experimental results (Figure 19 ,Figure 20 
and Table 3) show that D2-Net excels in the number of features (3007 and 2781) and the number of 

matches (1180), with a matching efficiency of 42.43%. Although its number of feature points is 

significantly higher than that of other algorithms, the average matching distance is 0.94, indicating that 
there is still room for improvement of D2-Net's matching accuracy in high light scenes.  

In contrast, SURF has the highest matching efficiency of 45.43% and its average matching distance 

is 0.30, showing high accuracy and reliability in feature matching. The experimental result graphs also 
demonstrate the effective capture and accurate matching of key features by SURF in high light scenes. 

In contrast, SIFT has lower matching efficiency (25.72%) and number of matches (409), reflecting 

its inadequate performance in dealing with complex scenes with strong illumination. Superpoint, 

although inferior to SURF and D2-Net in terms of the number of features and the number of matches, 
has a relatively high matching efficiency (31.67%), and the entropy of spatial distribution (4.5344 and 

4.5056) indicates its advantage in the diversity and uniformity of feature point distribution. In the 

experimental graph, Superpoint extracts a wider distribution of features, but the limited number of 
matching points affects its overall performance. 

In summary, SURF has the best overall performance under strong lighting conditions, especially 

leading in matching efficiency and accuracy. D2-Net still needs to be improved in matching accuracy 
despite its outstanding performance in the number of features extracted, while Superpoint has some 

advantages in feature distribution uniformity, which is suitable for scenarios that require extensive 

feature coverage. 

 

  

 

Figure 19. Example Test Images for the High Light Image Dataset (Photo/Picture credit : Original) 
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(a)Feature Detection with SIFT on High Light 

Images 

(b) Feature Detection with SURF on High Light 

Images 

  

(c) Feature Matching with SIFT on High Light 

Images 

(d) Feature Matching with SURF on High Light 

Images 

    

(e) Feature Detection with Superpoint on High 

Light Images 

(f) Feature Detection with D2-Net on High Light 

Images 

  

(g)Feature Matching with Superpoint on High 

Light Images 

(h)Feature Matching with D2-Net on High Light 

Images 

Figure 20. The result of feature detection  and feature matching on High Light Images (Photo/Picture 
credit : Original) 
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Table 3. Summary of SIFT, SURF, Superpoint, and D2-Net Performance on High Light Image Images 

Method Features Matches 
Matching 

efficiency %  

Average 

matching 

distance 

Spatial 

distribution 

entropy 

SIFT 
1959 

409 25.72 265.12 
4.2451 

1222 4.0912 

SURF 
1222 

457 45.43 0.30 
4.2361 

790 4.0602 

Superpoint 
1063 

318 31.67 0.77 
4.5344 

945 4.5056 

D2-Net 
3007 

1180 42.43 0.94 
7.4401 

2781 7.3855 

5.  Conclusion 

This study systematically compares the efficacy of four methods for feature detection and description—

SIFT, SURF, Superpoint, and D2-Net—under repetitive pattern backgrounds, cluttered backgrounds, 
and strong illumination conditions, evaluating their robustness and adaptability in different scenarios in 

depth. The practical performance of each algorithm and its limitations are thoroughly examined through 

multiple metrics of assessment, including the total amount of features, the amount of matches, matching 
efficiency, average matching distance, and spatial distribution entropy. The experimental results show 

that D2-Net performs well in most scenarios, especially in dealing with light changes and complex 

backgrounds, and demonstrates excellent feature extraction capability and high matching efficiency. In 

contrast, SURF and super point show higher matching efficiency and lower average matching distance 
under specific conditions, indicating that they are still competitive in some applications. SIFT, despite 

its stable performance in some scenarios, has a low overall matching efficiency, which restricts its 

applicability in complex applications. 
This study shows that suitable algorithms should be selected for different application scenarios to 

optimize the accuracy and efficiency of image matching. Future research can further explore the 

combination of deep learning and traditional algorithms to optimize the feature extraction and 
description methods and maintain the efficiency of the algorithms in resource-constrained environments. 

In addition, the development of adaptive feature matching mechanism for the application of algorithms 

in dynamic scenes will be an important direction to be studied in depth. 
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