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Abstract: SLAM (Simultaneous Localisation and Mapping) is very important in the task of 
mapping unknown deep-sea environments. This paper proposes an AUV cluster SLAM 
algorithm to improve the efficiency of SLAM mapping and navigation. The algorithm 
includes three main parts: (1) multi-beam sonar image processing algorithm, which detects 
and eliminates dynamic points while removing redundant information. (2) Combining DVL 
(Doppler Velocity Log), IMU (Inertial Measurement Unit) and DM (Depth Meter) data, 
SLAM is performed based on a Rao-Blackwellised particle filter (RBPF ). (3) The innovative 
iUSBL (inverted ultra-short baseline) system is used to realise the cooperative positioning 
between the master and slave AUVs. The multi-AUV underwater detection and mapping 
collaborative SLAM algorithm proposed in this paper not only significantly improves the 
mapping efficiency in unknown deep-sea environments but also effectively suppresses the 
errors introduced by dynamic points and ensures stable SLAM performance. Compared with 
a single AUV, the efficiency of mapping is significantly improved. 
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1. Introduction 

Maps are a necessary tool for the study of marine science. Usually, the accuracy of the generated map 
depends largely on the accuracy of the underwater vehicle positioning. Underwater scenes are full of 
restrictions, for example, GPS (Global Positioning System), which is commonly used by ground and 
air robots is less useful underwater as AUVs cannot obtain GPS information due to the strong 
attenuation of underwater electromagnetic waves, which brings great challenges to the navigation of 
autonomous underwater vehicles. In the absence of GPS, acoustic positioning systems or positioning 
systems based on inertial information are commonly used. However, for deep-sea areas, the operating 
distance of conventional underwater acoustic navigation is limited and the mother ship needs to 
follow or arrange acoustic beacons in advance, which is not suitable for use in unknown areas of the 
sea. The individual inertial navigation will produce cumulative errors over time and the accuracy of 
the estimation will gradually decrease. Although GPS correction algorithms at regular sea level can 
constrain cumulative errors, it is difficult to achieve accuracy in deep-sea measurement tasks. 

Compared with acoustic and inertial positioning systems, Simultaneous Localisation and Mapping 
(SLAM), as an autonomous navigation technology, can fuse inertial navigation information and DVL 
and the Kalman filter to eliminate cumulative errors. This can provide reliable positioning for 
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autonomous underwater vehicles (AUVs) in an unknown environment during movement and generate 
a model of their surrounding environment. Underwater SLAM provides a safe, efficient and 
economical method for exploring and investigating unknown underwater environments. With the 
development and utilisation of underwater resources such as oceans, underwater SLAM has become 
a research hotspot. 

Underwater SLAM can be divided into three categories according to the type of sensor: visual 
SLAM, light detection and ranging (LiDAR) SLAM and sonar SLAM. Laser radar uses a laser to 
analyse the contour and structure of the target. However, electromagnetic waves cannot propagate 
long distances underwater, and the laser will be severely attenuated in the water, resulting in 
absorption and scattering. Although vision-based SLAM has the advantages of low cost and high 
portability, it has poor visibility in deep-sea environments and is affected by particle and light 
conditions in water. The lack of illumination will seriously affect the quality of the final image. Sonar 
can detect and locate objects in the absence of light by using the characteristics of the object’s 
reflected sound wave. The sound wave shows a smaller attenuation rate and longer propagation 
distance than light in the underwater environment. Although the refresh rate and resolution of the 
visual camera are lower, sonar is an ideal choice for underwater SLAM. The sonar sensors used for 
underwater SLAM mainly include mechanical scanning sonar, side scanning sonar, multi-beam sonar, 
etc. 

Multi-beam sonar (MBS) is a kind of sonar used for underwater detection and it is one of the most 
important measuring instruments in ocean missions. Multi-beam sonar, which is widely used, can 
transmit hundreds of beams at the same time [1]. Cheng et al. proposed a filter-based multi-beam 
forward-looking sonar (MFLS) underwater SLAM algorithm [2]. In order to prevent excessive 
calculation, after extracting environmental features, threshold segmentation and distance constraint 
filtering are used and converted into sparse point cloud format. In addition, the method also combines 
multi-sensor data to estimate the position of the AUVs. The SLAM method based on Rao-
Blackwellised particle filter (RBPF) can be used to generate a map [3]. 

When performing underwater SLAM, a single type of sensor has some disadvantages. Integrating 
multiple sensors can solve these disadvantages and improve the robustness and accuracy of 
underwater SLAM. Common multi-sensor fusion methods include visual-inertial SLAM, laser-visual 
SLAM and multi-sensor SLAM combining sonar, IMU, vision and other sensors.  

In general, the computational complexity of the SLAM system is affected by the size of the 
exploration environment and is closely related to feature extraction, tracking, data association [6], 
filtering methods, etc. Due to the huge space of underwater environments, such as lakes and oceans, 
AUV activities are complex. Moreover, in the face of large-scale SLAM tasks, it is difficult to achieve 
a balance between accuracy and speed. Improving accuracy in large-scale environments is still an 
urgent problem to be solved in underwater SLAM applications. 

Considering the principle of the SLAM system, the feature-matching and solution results of SLAM 
in dynamic environments will be affected. Therefore, for SLAM on land, its use in dynamic 
environments is a research hotspot [7, 8, 9]. Similarly, dynamic phenomena in underwater 
environments are very common, such as marine organisms, water flows caused by robot motions, 
bubbles, etc. Consequently, there are numerous defects and errors in the maps generated in dynamic 
environments. 

Therefore, in response to the above challenges, this paper aims to develop a multi-AUV 
collaborative SLAM algorithm based on iUSBL. Our works aim to improve the reliability, continuity 
and robustness of AUV swarms in underwater pose estimation. Our research also seeks to improve 
the efficiency of underwater SLAM and generate more accurate and comprehensive map information 
for deep-sea navigation. Considering the dynamic underwater environment of the multi-AUV scene, 
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the RANSAC algorithm is used to detect and eliminate dynamic points, which improves accuracy 
while ensuring efficiency and effectively suppresses the errors introduced by dynamic points. 

2. Methodology 

We proposed a multi-AUV collaborative SLAM algorithm based on iUSBL, which can effectively 
solve the problem of low efficiency of single AUV SLAM. The algorithm significantly improves the 
mapping efficiency and positioning accuracy through multi-AUV collaboration. Figure 1 is the 
overall framework of the collaborative SLAM algorithm proposed in this paper. The algorithm can 
be divided into three parts, the main AUV SLAM module, the slave AUV SLAM module and the 
map fusion module. The iUSBL is used for information exchange between the master and slave AUVs. 

For a single AUV, the DVL data and IMU data are first fused to obtain the odometer data used for 
dead reckoning in the algorithm and the sonar data is processed. Firstly, threshold filtering is 
performed on the multi-beam sonar data and then it is converted into a point cloud form. Then, the 
RANSAC algorithm is used to eliminate the dynamic points. Finally, the distance constraint filtering 
is used to sparse the obtained point cloud data. The processed data is sent to the RBPF-SLAM 
algorithm for positioning and synthesis. The iUSBL is used for cooperative positioning between the 
master and slave AUVs and then the master and slave AUV maps are fused to generate the final map. 

 
Figure 1: The overall framework of the collaborative SLAM algorithm. 
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2.1. iUSBL System 

Compared with the traditional USBL system, the iUSBL system only needs to receive the signal from 
the AUV to the autonomous AUV, which avoids the multi-signal collision problem when multiple 
slave AUVs are located at the same time. Different from the traditional USBL, iUSBL is equipped 
with a beacon by the master AUV and a receiving array by the slave AUV to achieve one-way acoustic 
communication, which significantly reduces the communication energy consumption and time delay 
of the slave AUV. The iUSBL system is composed of a four-element transmitting array and a 
receiving hydrophone. The transmitting array is mounted on the master AUV, while the hydrophone 
is mounted on each slave AUV. The distance and azimuth between the master and slave AUVs can 
be calculated by receiving orthogonal coded signals from four arrays. 

 
Figure 2: The iUSBL diagram between master and slave AUVs. 

Due to the small size of the array, the distance between the receiving point and the transmitting 
end is far. It can be assumed that the sound lines are parallel. The relative azimuth angle between the 
master and slave AUVs is thus obtained: 

𝑐𝑜𝑠𝜃! =
𝑐 ∙ 𝜏!
𝐿  

𝑐𝑜𝑠𝜃" =
𝑐 ∙ 𝜏"
𝐿  

L is the distance of the coaxial array, 𝜃! , 𝜃"  are the target azimuth, 𝜏! , 𝜏"  are the time delay 
difference.  

The distance and relative position between the master and slave AUVs can be calculated based on 
the depth information of the depth sensor and the estimated azimuth information: 

𝑅 =
𝑧# − 𝑧$

,1 − (𝑐𝑜𝑠𝜃!)% − (𝑐𝑜𝑠𝜃")%
 

𝑥 = 𝑅 ∙ 𝑐𝑜𝑠𝜃! 

𝑦 = 𝑅 ∙ 𝑐𝑜𝑠𝜃" 

In the formula, R is the target tilt distance, 𝑧$, 𝑧# are the depth information of the slave AUV, and 
x and y are the position of the slave AUV in the master AUV coordinate system. The master AUV 
broadcasts its coordinates regularly. According to the absolute position information of the main AUV 
and the relative position information between AUVs, each slave AUV is positioned by coordinate 
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system transformation. The AUV position information is calculated from the measured values 𝑧$, 𝑧#, 
𝜏!, 𝜏". In these four measurements, the depth information 𝑧$ and 𝑧# are obtained by the depth meter 
and the measurement accuracy is particularly high. 

 
Figure 3: Geometric Graph of Theoretical Position. 

2.2. Single AUV Dead Reckoning 

The dead reckoning module uses IMU, DVL and DM to provide a rough estimation of AUV attitude. 
After sampling the data, the dead reckoning module uses the extended Kalman filter (EKF) to fuse 
the data of these sensors to estimate the attitude.  

Because the depth measurement of DM is very accurate, the measured value of DM is regarded as 
the true value and only the two-dimensional plane needs to be considered when performing dead 
reckoning. The IMU includes an accelerometer and a gyroscope. The accelerometer detects the 
acceleration of the AUV along each axis, the gyroscope detects the angular velocity of the AUV 
relative to the navigation coordinate system and the DVL determines the speed of the AUV by 
measuring the Doppler effect of the underwater acoustic signal. 

In this paper, the IMU / DVL tight coupling method is used to directly fuse the velocity information 
of DVL with the acceleration and angular velocity information of IMU. Compared with the loose 
coupling method, it can reduce the accumulation of navigation error more effectively, so as to 
improve the accuracy and stability of the whole system. 

In order to achieve IMU / DVL tight coupling, we first need to convert the speed information of 
the DVL to the inertial coordinate system. This can be achieved by the following formula: 

𝑣&'() = 𝑅(𝜃*+,)𝑣&'(-  
Thus, the calculation speed error: 

𝑒. = 𝑣*+,) − 𝑣&'()  
The position, velocity, attitude error and DVL drift are estimated and updated by Kalman filter. In 

the case of tight coupling, the velocity information of DVL is more effectively used to correct the 
error of INS.. 

2.3. Threshold Segmentation Algorithm 

(1) The average pixel value of the sonar image is calculated as the threshold of filtering.  
(2) The pixel value below the threshold is assigned to 0 and the pixel value above the threshold 

remains unchanged. 
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2.4. RANSAC Algorithm 

(1) Select two adjacent frames of a sonar image and, according to the change of pixels in the sonar 
image in the sonar coordinate system, calculate the 3d flow across two frames.  

(2) For a pair of matching feature points, the neighbours with similar 3D flow are selected as the 
cluster and the initial guesses of the rotation matrix R and the translation T are calculated. Based on 
the initial guess, the corresponding interior points are obtained. We will then iterate between the 
update R and T and the interior point until the interior point is no longer included. For a feature point, 
where we can’t find at least three similar neighbours, we will regard it as an outer point, skip and 
eliminate it.  

(3) Select another pair of matching feature points from the remaining features and then proceed as 
described in step (4).  

(4) After classifying all the features, the largest group is selected as the static group and the point 
cloud image after dynamic point elimination is generated. 

2.5. RPBF-SLAM 

Rao-Blackwellised PF-SLAM decomposes the SLAM problem into independent localisation and 
mapping. Its algorithm implementation is divided into four stages, the sampling stage, the weight 
calculation stage, the resampling stage and the map update stage:  

(1) Sampling stage: for the particle set at time k, PF calculates the proposal distribution according 
to the motion model to obtain the particle set at time k + 1 and the pose of each particle represents a 
motion pose estimation of AUV.  

(2) Weight calculation stage: the weight of each particle is /
)
 at the initial stage. After iterative 

updates, the weight is the ratio of the target distribution to the proposed distribution: 

𝑊0
1 =

𝑝6𝑥/,01 7𝑧/:0 , 𝑢/:04/:
𝑞6𝑥/:01 7𝑢/:04/:

 

(3) Resampling stage: resample the particle set according to the weight, discard the low weight 
and retain the high weight.  

(4) Map update stage: particles update each feature in the map according to the sonar observation 
data and the current state trajectory. 

3. Experimental Results 

The simulation experiment was carried out using the ROS 2 platform. The Scott Reef 25 data set of 
the Australian Centre for Field Robotics’ marine robotics group was used. The effectiveness of the 
proposed SLAM algorithm was verified by simulation and practical experiments.  

The experimental data was segmented to achieve the effect of multiple AUVs. The original 
trajectory was divided into five segments, assigned to five AUVs and then the data was grouped 
according to the trajectory, and the original data was divided into five parts. The trajectory of each 
AUV is shown below. 
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Figure 4: Trajectory segmentation results. 

 
Figure 5: Trajectory corresponding to 5 AUVs. 

3.1. Sonar Image Processing 

The sonar image was processed by threshold filtering. Taking the previous two frames as an example, 
it can be seen that after threshold filtering, the noise of the sonar image was greatly reduced, which 
can better reflect the characteristics of the environment. 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/100/2025.17850 

91 



 

 

 
Figure 6: Comparison of the previous frame sonar image before and after threshold filtering. 

 
Figure 7: Comparison of the next frame sonar image before and after threshold filtering. 

The sonar image after threshold filtering was converted into a point cloud image. Figure 8 is a 
three-dimensional point cloud image and Figure 9 is a plane point cloud image. Figure 9 shows that 
the feature points of the point cloud image after filtering are obvious. 

 
Figure 8: 3D point cloud images of two frames. 
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Figure 9: Point cloud images of two frames. 

3.2. D Flow Estimation 

Visualise the computed 3D flow vectors across the two sonar frames, indicating the pixel motion 
between them. Figure 10 shows the 3D flow vector of two sonar frames. Based on this, the pixels are 
classified. Prepare for the follow-up work. 

 
Figure 10: The 3D flow between two frames. 

3.3. Feature Point Clustering 

Figure 11 shows the movement of different feature points. In the figure, we can see the normal motion 
trajectory and abnormal motion trajectory. The feature points with abnormal motion trajectories are 
the dynamic points that need to be eliminated.  
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The RANSAC algorithm was used to iterate and the dynamic points were detected according to 
the 3D flow and motion trajectory. The number of iterations of the RANSAC algorithm was set to 
5000. After 5000 iterations, we got the interior point, as shown in Figure 12. 

 
Figure 11: Dynamic point motion trajectory. 

 
Figure 12: The feature points after elimination. 

3.4. Outlier Rejection 

The outliers detected by the RANSAC algorithm, that is, dynamic points, were eliminated. The point 
cloud images before and after elimination are shown in Figure 13. 
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Figure 13: Comparison before and after elimination of outliers. 

3.5. Master-Slave AUV Error Curve 

The comparison of the position of the main AUV and the slave AUV calculated by the proposed 
algorithm with the real situation on the ground is shown in the figure. It can be seen that after working 
for a long time, their trajectory error is very small and because multiple AUVs work at the same time, 
the task time is greatly shortened and the cumulative error increases with time. The simulation results 
show the effectiveness of our proposed method. 

 
Figure 14: The slam estimation error of the main AUV. 
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Figure 15: The slam estimation error of the slave AUV1. 

 
Figure 16: The slam estimation error of the slave AUV2. 
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Figure 17: The slam estimation error of the slave AUV3. 

 
Figure 18: The slam estimation error of the slave AUV4. 

4. Discussion 

Presently, some problems still remain. For example, the final map fusion can be regarded as an ideal 
condition. However, in practical engineering, it is difficult to realise the transmission of maps 
underwater and it is necessary to perform map fusion in the console. In view of these problems, future 
work must continue to study data transmission methods suitable for underwater. 

5. Conclusion 

The comparison of the time required for single AUV and multi-AUV SLAM is shown in the following 
table. It can be seen that multiple AUVs can greatly reduce the time required for the task while 
ensuring positioning accuracy. 
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Table 1: Time required for single AUV and multi-AUV SLAM. 

 TIME(s) 
single AUV 2514.7 
Master AUV 514.1 
Slave AUV1 522.9 
Slave AUV2 534.6 
Slave AUV3 526.3 
Slave AUV4 517.4 

6. Summary 

This paper proposes a cooperative SLAM algorithm for multi-AUV underwater exploration and 
mapping. To address the challenges posed by the dynamic environment encountered with multiple 
AUVs, a RANSAC-based algorithm was introduced to detect and eliminate dynamic points from the 
sonar data. The proposed approach fuses data from Doppler Velocity Log (DVL), Inertial 
Measurement Unit (IMU) and Multi-Beam Forward-Looking Sonar (MFLS) sensors.  

Subsequently, a Rao-Blackwellised Particle Filter (RBPF)-based SLAM method was employed to 
mitigate the accumulation of inertial sensor errors and generate accurate occupancy grid maps. The 
algorithm’s efficiency was evaluated through simulations on the ROS 2 platform, utilising the Scott 
Reef 25 dataset from the Australian Centre for Field Robotics’ marine robotics group. The results 
demonstrate improved positioning accuracy and mapping performance, showcasing the potential of 
the proposed cooperative multi-AUV SLAM approach for efficient underwater exploration and 
mapping in dynamic environments. 
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