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Abstract. The analytical solution of the electromagnetic field lines was derived, providing a 

foundation for generalizing conclusions and forming a coherent set of equations to describe the 

dynamics of electromagnetic waves. By applying Maxwell's equations, this paper analyzed the 
rectangular waveguide model, focusing on the guiding effect of the passive region on the 

propagation of electromagnetic waves. Additionally, the Helmholtz equation was used to 

describe the behavior of electromagnetic fields within the passive guided wave system. Through 

the analytical solution of the field lines, the distribution of electromagnetic forces could be 

determined through integration calculations. To enhance the understanding of these concepts, 

this paper utilized Python programming to simulate electromagnetic force lines, providing a 

visual representation of the discussed theories. This simulation not only deepened the 

understanding of electromagnetic principles but also demonstrated their importance in practical 

applications, contributing to the field of electromagnetism research. The results of the study 

emphasize the significance of analytical solutions in understanding electromagnetic phenomena 

and provide valuable insights for future research in related fields. 

Keywords: Rectangular waveguide, electromagnetic field lines, analytical solution, maxwell's 

equations, helmholtz equation. 

1.  Introduction   

Maxwell’s equations, formulated by the British physicist James Clerk Maxwell, are a set of equations 

summarizing the fundamental laws of electromagnetic fields and are considered one of the most 
significant scientific achievements of 19th-century physics. While Maxwell is credited with this major 

breakthrough, the creation of these equations was also an inevitable result of scientific progress at the 

time [1,2,3]. With the successive establishment of Coulomb's Law, Biot-Savart Law, Ampere's Law, 

Ohm's Law, and Faraday's Law of Induction, it became clear that localized electromagnetic phenomena 
had been discovered, indicating that the conditions for forming a universal electromagnetic law that 

could unify various electromagnetic phenomena were ripe [4]. On December 8, 1864, Maxwell 

presented his summary of electromagnetic theory in a paper titled "A Dynamical Theory of the 
Electromagnetic Field" at the Royal Society of London, which was published in the Philosophical 

Transactions of the Royal Society in 1865. The third section of this paper, titled "General Equations of 

the Electromagnetic Field," was where Maxwell's equations were first introduced. These equations are 
the core and main achievement of the paper. 
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Radio communication is a common method of communication in daily life. It utilizes 

electromagnetic waves to transmit information through space, where modulated electrical signals are 

loaded onto radio waves, transmitted across space and ground, and finally received at the other end. 
Radio communication relies on the principles of electromagnetic waves to achieve wireless 

communication [5].   

Maxwell’s equations allowed him to successfully predict that light is a form of electromagnetic wave, 
possessing wave-like properties [6]. Therefore, light also exhibits electromagnetic wave phenomena 

such as refraction, reflection, scattering, diffraction, and absorption. This prediction promoted 

advancements in spectroscopic analysis, diffraction imaging, and atmospheric pollution measurements. 

Maxwell’s equations provided the first complete description of electromagnetic theory, demonstrating 
the conversion between electric and magnetic fields. They have wide applications in everyday life and 

have profoundly influenced subsequent physical research. The significance of these equations for 

physics cannot be overstated [7,8]. 
This paper utilizes Maxwell’s equations, the Helmholtz equation, and the equation for magnetic force 

lines to analyze and plot the distribution of electric and magnetic force lines in a rectangular waveguide, 

thereby providing a comprehensive analytical solution for electromagnetic force lines. In this paper, the 
analytical solution agrees with theoretical results when taken to the limit. The analysis indicates that the 

current study on the distribution of electric and magnetic field lines in rectangular waveguides, aimed 

at improving the analytical solution of electromagnetic field lines, is not thorough enough and requires 

further research and analysis. 

2.  Methods  

2.1.   Maxwell's equations and the Helmholtz equation   

The position of Maxwell’s equations in electromagnetism is analogous to Newton’s laws of motion in 
classical mechanics. Electromagnetic theory, with Maxwell’s equations at its core, is one of the proudest 

achievements of classical physics, revealing the perfect unification of electromagnetic interactions.   

For guided electromagnetic waves, the Maxwell equations for a passive region are:   

∇×H=jωεE                                                                               (1) 

∇×E=-jωμH                                                                             (2) 

The Helmholtz equation, which governs the electromagnetic fields in a passive guided wave system, 

is:   

∇2E+k2E=0                                                                              (3) 

∇2H+k2H=0                                                                             (4) 

2.2.  Using the Helmholtz equation to solve for the various field components of the TE wave 

For TE waves, Ez=0 , which is a property of transverse electric waves. The equation satisfying the 

boundary conditions of the guided wave system is:   

∇𝑡
2𝐻𝑧 + 𝑘𝑐

2𝐻𝑧 = 0                                                                     (5) 

∇𝑡
2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
,𝑘𝑐
2 = 𝑘2 − 𝑘𝑧

2｡                                                           (6) 

After solving the Helmholtz equations, we obtain:   

𝐻𝑧(𝑥, 𝑦, 𝑧) = 𝐻0 cos (
𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                             (7) 

The solution process is as follows: 

𝐻(𝑥, 𝑦, 𝑧) = 𝐻0(𝑥, 𝑦)𝑒−𝑗𝑘𝑧𝑧                                                                 (8) 
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Let 

𝐻0(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)                                                                           (9) 

Therefore 

𝑋 ′′(𝑥)

𝑋(𝑥)
+

𝑌 ′′(𝑦)

𝑌(𝑦)
+ 𝑘𝑐

2 = 0                                                                     (10) 

We make 𝑘𝑐
2 = 𝑘𝑥

2 + 𝑘𝑦
2 , and 

𝑋 ′′(𝑥)

𝑋(𝑥)
+ 𝑘𝑥

2 = 0                                                                           (11) 

𝑌 ′′(𝑦)

𝑌(𝑦)
+ 𝑘𝑦

2 = 0                                                                           (12) 

Finally we get 

𝑋(𝑥) = 𝑐1 cos(𝑘𝑥𝑥) + 𝑐2 sin(𝑘𝑥𝑥)                                                     (13) 

𝑌(𝑦) = 𝑐3 cos(𝑘𝑦𝑦) + 𝑐4 sin(𝑘𝑦𝑦)                                                    (14) 

The general solution of 𝐻𝑧  is: 

𝐻𝑧(𝑥, 𝑦, 𝑧) = (𝑐1 cos(𝑘𝑥𝑥) + 𝑐2 sin(𝑘𝑥𝑥))(𝑐3 cos(𝑘𝑦𝑦) + 𝑐4 sin(𝑘𝑦𝑦))𝑒−𝑗𝑘𝑧𝑧         (15) 

Based on the values of x and y on the waveguide wall 𝐻𝑧 , it can be solved that 

𝑘𝑐
2 = (

𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

                                                                    (16) 

𝐻𝑧(𝑥, 𝑦, 𝑧) = 𝐻0 cos (
𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                              (17) 

𝑘𝑧 = 𝑘√1− (
𝑓𝑐

𝑓
)
2

= 𝑘√1− (
𝜆

𝜆𝑐
)
2

                                                       (18) 

𝑓𝑐 =
𝑘𝑐

2𝜋√𝜀𝜇
                                                                             (19) 

In summary, due to the source-free Maxwell's equations, the various field components of the TE 

wave and 𝐻𝑧  can be expressed as follows: 

𝐻𝑥(𝑥, 𝑦, 𝑧) = 𝑗
𝑘𝑧

𝑘𝑐
2

𝑚𝜋

𝑎
𝐻0 sin (

𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                           (20) 

𝐻𝑦(𝑥, 𝑦, 𝑧) = 𝑗
𝑘𝑧

𝑘𝑐
2

𝑚𝜋

𝑎
𝐻0 cos (

𝑚𝜋

𝑎
𝑥) sin (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                           (21) 

𝐸𝑦(𝑥, 𝑦, 𝑧) = 𝑗
𝜔𝜇

𝑘𝑐
2

𝑚𝜋

𝑎
𝐻0 sin (

𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                           (22) 

𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝑗
𝜔𝜇

𝑘𝑐
2

𝑚𝜋

𝑎
𝐻0 cos (

𝑚𝜋

𝑎
𝑥) sin (

𝑛𝜋

𝑏
𝑦) 𝑒−𝑗𝑘𝑧𝑧                                           (23) 

2.3.  Discussion on a rectangular waveguide problem 

For a rectangular waveguide with cross-sectional dimensions of 22.86 mm × 10.16 mm and air (vacuum) 
as the medium, we need to find the instantaneous values of the electric and magnetic field components 

of 𝑇𝐸01. 
First, according to the source-free Maxwell's equations in the guided electromagnetic wave region 

∇×H=jωεE                                                                             (24) 

∇×E=-jωμH                                                                            (25) 
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Next, based on the properties of the TE wave when m=0 and n=1, and similar to the field components 

in the method, the corresponding time-domain instantaneous form can be easily obtained 

𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝐴1 cos(𝑘𝑥𝑥) sin(𝑘𝑦𝑦) 𝑒𝑖(𝑘𝑧𝑧−𝜔𝑡)                                              (26) 

Ey(x, y, z) = A2 sin(kxx) cos(kyy) ei(kzz−ωt)                                             (27) 

Hx(x, y, z) = A3 sin(kxx) cos(kyy) ei(kzz−ωt)                                             (28) 

Hy(x, y, z) = A4 cos(kxx) sin(kyy) ei(kzz−ωt)                                             (29) 

Hz(x, y, z) = A5 cos(kxx) cos(kyy) ei(kz−ωt)                                              (30) 

kyA1 − kxA2 = −iωμA5                                                                      (31) 

ikA1 = iωμA4                                                                              (32) 

ikA2 = −iωμA3                                                                            (33) 

−kxA4 + kyA3 = 0                                                                        (34) 

kx =
mπ

a
                                                                                    (35) 

ky =
nπ

b
                                                                                     (36) 

k = √
4π2

λ
2 − kx

2 − ky
2
                                                                          (37) 

If 𝑛 ≠ 0, 

A3 =
m

n

b

a
H0                                                                                (38) 

A1 = cμH0                                                                                 (39) 

A2 = −cμ
m

n

b

a
H0                                                                       (40) 

A5 =
i

k
(

n

b
+

m2b

na2
) πH0                                                              (41) 

In which 

𝐴4 = 𝐻0                                                                                (42) 

Let n=1 and m=0, now calculate the equations for the electric and magnetic field lines based on the 

force line equations 

dx

ds
= ux(x, y, z)                                                                         (43) 

dy

ds
= uy(x, y, z)                                                                         (44) 

dz

ds
= uz(x, y, z)                                                                          (45) 

For 𝑇𝐸01  

𝐻𝑥 = 0                                                                                 (46) 

𝐻𝑦 = 𝐴4𝑠𝑖𝑛𝑘𝑦𝑦𝑐𝑜𝑠(𝑘𝑧 − 𝜔𝑡)                                                         (47) 

𝐻𝑧 = −|𝐴5|𝑐𝑜𝑠𝑘𝑦𝑦𝑠𝑖𝑛(𝑘𝑧 − 𝜔𝑡)                                                     (48) 
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So we get 

𝑑𝑥

𝑑𝑠
= 0                                                                                (49) 

𝑑𝑦

𝑑𝑠
= 𝐴4𝑠𝑖𝑛𝑘𝑦𝑦𝑐𝑜𝑠(𝑘𝑧 − 𝜔𝑡)                                                            (50) 

𝑑𝑧

𝑑𝑠
= −|𝐴5|𝑐𝑜𝑠𝑘𝑦𝑦𝑠𝑖𝑛(𝑘𝑧 − 𝜔𝑡)                                                        (51) 

Here, by dividing 
𝑑𝑦

𝑑𝑠
 by 

𝑑𝑧

𝑑𝑠
, the introduced intermediate variables are eliminated, resulting in 

𝑑𝑧

𝑑𝑦
=

|𝐴5|

𝐴4
𝑡𝑎𝑛𝑘𝑦𝑦𝑐𝑜𝑡(𝑘𝑧 − 𝜔𝑡)                                                          (52) 

By placing 
𝑑𝑦

𝑑𝑠
 and 

𝑑𝑧

𝑑𝑠
 on both sides of the equation and integrating, the expression for the magnetic 

field lines can be obtained 

−
|𝐴5|𝑘

𝐴4𝑘𝑦
𝑙𝑛|𝑐𝑜𝑠𝑘𝑦| = 𝑙𝑛|cos(𝑘𝑧 − 𝜔𝑡)| + 𝐶                                               (53) 

The electric field lines are similar, as it is a TE mode field with m=0 and n=1. Therefore, the entire 

electric field line is  

𝐸𝑥 = 𝐴1𝑐𝑜𝑠𝑘𝑥𝑦𝑠𝑖𝑛𝑘𝑦𝑦𝑒𝑖(𝑘𝑧−𝜔𝑡)                                                       (54) 

And it will appear as straight lines in space. By using m=0,n=1, we can plot the electric and magnetic 
field lines. 

3.  Simulation results   

Using Python code, we simulated the analytical solution for the electromagnetic force lines. Figure 1 
shows the simulation results for the electromagnetic force lines, where time is expressed in units of one 

electromagnetic wave period. Figures 1(a)-(d) display the changes in the magnetic force lines over time. 

It can be seen that the magnetic force lines are entirely circular, and the shape of the magnetic force line 

loops does not change over time, demonstrating the propagation characteristics of a lossless waveguide. 

 
(a)                                                             (b) 
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(c)                                                                                        (d) 

 
(e)                                                                                    (f) 

Figure 1. The simulation results ()Photo/Picture credit : Original 

Figure 1 (e) and (f) show the electric field lines in the waveguide. Since the propagating 

electromagnetic wave is in the TE01 mode, the wave vector of the electric field in the direction parallel 

to the waveguide is zero, so the electric field lines do not move with time. Additionally, there is only 

one mode of electric field lines in the cross-section of the waveguide, which points in a single direction. 
As a result, the electric field lines are always straight and perpendicular to the surface of the rectangular 

conductor. 

4.  Conclusion 

This study conducted an in-depth investigation of the rectangular waveguide model for guided 

electromagnetic waves in electromagnetics. By solving the Helmholtz equation, the analytical method 

was used to calculate the components of the field, and the time-domain instantaneous forms of the field 

components were derived for specific cases. In solving the force line equations, the definition of force 
lines was applied, and the method of elimination was cleverly used to derive the equation for the 
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magnetic force lines, laying the foundation for simulating the force line diagrams. Since the electric field 

lines are straight, they are simpler to handle compared to the closed-loop magnetic field lines. 

Furthermore, this study explored the behavior characteristics of electromagnetic fields under 
different conditions, particularly the propagation modes in passive regions. Through detailed 

mathematical derivations and theoretical analyses, we not only validated the effectiveness of existing 

theories but also revealed some new phenomena. These findings are significant for understanding and 
optimizing the propagation of electromagnetic waves in waveguides. Additionally, the simulation of 

electromagnetic force lines using Python programming provided intuitive visual results, further 

enhancing the understanding of theoretical principles and demonstrating their potential value in practical 

applications. The research findings underscore the importance of analytical methods in electromagnetic 
research and provide valuable references for future studies in related fields. 
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