

Research on Quantum Computing Acceleration of Support
Vector Machines in Multi-dimensional Nonlinear Feature

Spaces

Haozhe Liu1,a,*

1College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai,

China

a. 20221522@mail.sheip.edu.cn

*corresponding author

Abstract: The current development of Support Vector Machines (SVM) has reached a

bottleneck, with issues such as long training times and weak interpretability when dealing

with large-scale, multi-dimensional data. This paper introduces the concept of Quantum

Support Vector Machines (QSVM) and achieves efficient solutions through quantum

algorithms such as the HHL algorithm. The research designs a computational architecture

that combines classical and quantum computing, utilizing the Pauli decomposition of

Hermitian matrices to simulate the quantum simulation of Hamiltonian quantities and

implementing the quantum simulation of unitary operators. Based on the conclusions, a

complete quantum linear solver circuit is designed, achieving exponential growth in

computational complexity. Experiments using the Iris dataset demonstrate the excellent

classification performance of QSVM, which outperform classical SVM in classification

accuracy, computational time complexity, and memory requirements. More efficient

quantum mapping algorithms and quantum circuit optimization methods are implemented,

providing new ideas and methods for the application of SVM to large-scale datasets.

Keywords: Quantum Linear Solver, Support Vector Machine, Hamiltonian Simulation,

Quantum Circuit.

1. Introduction

The Support Vector Machine (SVM) is a supervised learning model initially developed based on the

research by Soviet scholars Vladimir N. Vapnik and Alexander Y. Lerner in 1963. It is commonly

used for pattern recognition, classification, and regression analysis, serving as a widely applied

discriminative method in the field of machine learning. In 1992, Bernhard E. Boser, Isabelle M.

Guyon, and Vapnik introduced kernel methods, enabling SVMs to handle non-linearly separable data

[1].

The SVM algorithm essentially solves a quadratic programming problem. When dealing with

large-scale sample data, the number of matrix elements grows quadratically with the size of the

training set. In 2014, P. Rebentrost et al. proposed the Quantum Support Vector Machine (QSVM)

[2]. The QSVM transforms the quadratic programming problem of SVMs into a least squares problem

and leverages quantum algorithms to efficiently solve key steps such as vector inner products, thereby

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

100

significantly reducing computational complexity. Compared to classical SVMs, QSVMs have

significant advantages in computational efficiency, especially when dealing with large-scale datasets,

where the complexity is reduced exponentially.

Since 1995, when Professor Kak of Louisiana State University proposed the concept of quantum

neural computing, the theoretical and applied research on quantum computing acceleration has

gradually gained popularity. In 2001, Horn et al. introduced a new clustering algorithm based on

quantum mechanics for unsupervised clustering. In 2009, Harrow et al. proposed the famous HHL

algorithm, which achieved exponential speedup compared to the best-known classical algorithm with

a time complexity of 𝑂(𝑛)[3].

Although many scholars have conducted research on the time complexity and practical

applications of quantum support vector machines and made outstanding contributions to the direction

of quantum computing, there are still issues of low accuracy and large approximation values in unitary

matrix simulations, and the feature dimension of the training dataset is only two-dimensional.

To apply quantum support vector machines in multi-feature dimensional non-linear data spaces,

this paper designs a computational architecture combining classical and quantum computing. It

utilizes Pauli decomposition of Hermitian matrices to simulate the quantum simulation of

Hamiltonians. Based on the HHL algorithm, quantum phase estimation, quantum Fourier transform,

and conditional rotation transformations of quantum states are designed to construct a quantum circuit

for solving linear equations and realize the quantum simulation of unitary operators[4].

2. Quantum Algorithm Design

To solve the equation 𝑨𝒙 = 𝒃 for a given Hermitian matrix 𝑨 ∈ 𝑹𝑵 × 𝑵 and a vector �⃗⃗� ∈ 𝑹𝑵 on

a quantum computer using the HHL algorithm, the first step is to perform quantum state encoding.

Assuming the dimension of the Hermitian matrix 𝑨 is 𝑵 = 𝟐𝒏, where 𝒏 is the number of quantum

bits used for quantum state encoding. For vectors �⃗⃗� and �⃗⃗� , during quantum state encoding, the i-th

element of 𝑏 (or 𝑥) is encoded as the i-th basis state of the quantum superposition state |𝑏⟩ (or |𝑥⟩).
Through a quantum circuit, the solution satisfying A|𝑥⟩ = |𝑏⟩ is obtained[5].

The HHL algorithm circuit design mainly consists of three modules: quantum phase estimation,

controlled rotation of quantum states, and quantum state inversion and calculation.

2.1. Principle of the HHL Algorithm

Given a Hermitian matrix 𝐴 and a vector �⃗� , suppose the spectral decomposition of 𝐴 is as follows:

𝐴 = ∑𝜆𝑗|𝑢𝑗⟩⟨𝑢𝑗|

𝑁

𝑗=1

(1)

Express |𝑏⟩ in terms of the basis {|𝑢𝑗⟩}: |𝑏⟩ = ∑ 𝛽𝑗|𝑢𝑗⟩
𝑁

𝑗=1
. Using quantum phase estimation

(QPE) with 𝑈 = 𝑒𝑖𝐴Δ𝑡, the result is as follows:

|𝑏⟩ →
QPE

∑𝛽𝑗|𝑢𝑗⟩ |𝜆𝑗

~

⟩

𝑁

𝑗=1

(2)

For equation (2), applying operator 𝑈 yields 𝑒𝑖𝐴Δ𝑡 = ∑ 𝑒𝑖𝜆𝑗Δ𝑡|𝑢𝑗⟩⟨𝑢𝑗|
𝑁

𝑗=1
, where |𝜆𝑗

~

⟩ represents

an estimate of the eigenvalue 𝜆𝑗 (the wavy line indicates an estimate, the same applies to the

following). The solution to the equation is:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

101

|𝑥⟩ = 𝐴−1|𝑏⟩ = ∑𝛽𝑗(𝜆𝑗)
−1|𝑢𝑗⟩

𝑗

(3)

The key of the algorithm is to simulate the operator 𝑈 = 𝑒𝑖𝐴Δ𝑡 on |b⟩, which will be described in

detail later.

2.2. Data preprocessing and quantum state encoding

In the HHL algorithm, matrix 𝐴 is required to be Hermitian, that is, matrix 𝐴 needs to satisfy 𝐴† =
𝐴, this requirement can be relaxed in the concrete implementation, if 𝐴 is not Hermitian, construct

𝐴
~

 as follows:

𝐴
~

= (
0 𝐴
𝐴† 0

) (4)

Then solving the equation 𝐴
~

𝑦
→

= (𝑏
→

0
), it is verified that the solution 𝑦

→
 of the obtained equation

must have the form 𝑦
→

= (
0

𝑥
→), where 𝐴𝑥

→
= 𝑏

→

. Because the HHL algorithm is a quantum algorithm,

the vector 𝑏
→

 needs to be encoded into the quantum state and input in the quantum state |𝑏⟩.
One of the keys of the HHL algorithm is the quantum state encoding of vectors and matrices, and

the target register is set to store the information of quantum state |𝑏⟩. The initial state of the quantum

state is |0⟩⊗𝑛, that is, all qubits are in the |0⟩ state, and the value of the vector �⃗� is encoded to |b⟩
to satisfy

|𝑏⟩ = ∑𝑏𝑖

𝑁

𝑖=1

|𝑖⟩ (5)

Where 𝑏𝑖 is the i-th component of vector 𝑏 and ∑ |𝑏𝑖|
2

𝑖 = 1.

In the concrete implementation, the rotation gate is used to encode the components of the vector

into the amplitude of the qubit. As shown in Figure. 1, using a rotation gate, the quantum state is

rotated from |0⟩ to the target state related to the Angle 𝜃. The amplitude is encoded by adjusting the

rotation Angle. The rotation Angle 𝜃 is calculated based on the inverse trigonometric function of the

amplitude:

𝜃 = 2 × 𝑎𝑟𝑐𝑠𝑖𝑛(𝑏𝑖) (6)
After rotation, the amplitude of each qubit has been associated with the corresponding component

of vector �⃗� , and the quantized representation |b⟩ of vector �⃗� is obtained[6].

Figure 1: Quantum states are encoded on the Bloch sphere

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

102

2.3. Quantum phase estimation

For a unitary matrix 𝑈, which has a complex eigenvalue 𝑒𝑖𝜑 and an eigenvector |u⟩ with a modulus

of 1, the purpose of the quantum phase estimation algorithm is to estimate the value of the phase 𝜑

within a certain error range[7].

In this paper, the unitary operator 𝑈 = 𝑒𝑖2𝜋𝐴 corresponding to matrix 𝐴 has an eigenvalue 𝑒𝑖2𝜋𝜆

and an eigenvector |u⟩, where |u⟩ is the eigenvector of the real eigenvalue 𝜆 of 𝐴.

The steps of phase estimation can be divided into three steps. Firstly, Hadamard gate operation is

performed on all qubits of the phase register, and controlled 𝑈 gate operation is performed

continuously on the control register, where the power of 𝑈 gate is 2
0, 21, … , 2𝑡−1

, the control bits are

𝑞𝑡−1, 𝑞𝑡−2, … , 𝑞1, 𝑞0, then the state in the first register is going to be

|𝜓1⟩ =
1

2
𝑡
2

(|0⟩ + 𝑒𝑖2𝜋2𝑡−1𝜑|1⟩)(|0⟩ + 𝑒𝑖2𝜋2𝑡−2𝜑|1⟩)… (|0⟩ + 𝑒𝑖2𝜋20𝜑|1⟩)

That is

|𝜓1⟩ =
1

2
𝑡
2

∑ 𝑒𝑖2𝜋𝜑𝑘|𝑘⟩

2
𝑡−1

𝑘=0

(7)

Where 𝑘 is the decimal representation of the tensor product state.

Subsequently, an inverse quantum Fourier transform is applied to the phase register, denoted as

𝑄𝐹𝑇† in the circuit. Applying the inverse quantum Fourier transform to |𝜓1⟩ yields |𝜓2⟩[8].

|𝜓2⟩ = 𝑄𝐹𝑇†|𝜓1⟩ =
1

2
𝑡 ∑ 𝑎𝑥|𝑥⟩

2
𝑡−1

𝑥=0

(8)

Which 𝑎𝑥 = ∑ 𝑒2𝜋𝑖𝑘(𝜑−𝑥/2𝑡)
2
𝑡−1

𝑘=0
 for eigen vector |𝑥⟩(𝑥 = 0.1, . . . , 2𝑡). According to the above

equation, when 2
𝑡𝜑 is an integer and 𝑥 = 2

𝑡𝜑 is satisfied, the probability amplitude is the

maximum value 1, and the final state of the first register can accurately reflect 𝜑. When 2
𝑡𝜑 is not

an integer, 𝑥 is an estimate of 𝜑, and the larger 𝑡 is, the more accurate the estimate will be.

Finally, the quantum bit of the first register was measured, and the final state of the first register

𝑓 = ∑ 𝑎𝑥|𝑥⟩2
𝑡−1

𝑥 , 𝑥 = 0,1, . . . , 2𝑡
, from which the largest amplitude 𝑎𝑚𝑎𝑥 is found, and the

corresponding intrinsic basis vector |𝑥⟩ in 𝑥 divided by 2
𝑡
 is the estimated value of the phase.

Overall, when using 𝑡 auxiliary qubits, the effect of QPE can be written as follows.

|𝑏⟩|0⟩⊗𝑡|0⟩ = ∑𝛽𝑗|𝑢𝑗⟩|0⟩
⊗𝑡|0⟩

𝑁

𝑗=1

→
QPE

∑𝛽𝑗|𝑢𝑗⟩|𝜑𝑗

~
⟩|0⟩

𝑁

𝑗=1

(9)

2.4. Conditional rotation

After QPE, available quantum state ∑ 𝛽𝑗|𝑢𝑗⟩|𝜑𝑗

~
⟩|0⟩

𝑁

𝑗=1
, To extract the information of 𝜆𝑗 from the

quantum state |𝜑𝑗

~
⟩ , the specific implementation using the controlled rotation gate 𝐶𝑅(𝑘) is as

follows:

𝐶𝑅(𝑘)|𝜑
~
⟩|𝑏⟩ = {

|𝜑
~
⟩|𝑏⟩ , 𝑘 ≠ 𝜑

~

|𝜑
~
⟩𝑅𝑦 (2 arcsin

𝐶

𝜆
) |𝑏⟩ , 𝑘 = 𝜑

~ (10)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

103

When 𝑘 chooses the correct 𝜑
~

, the selection operation will be applied to the subsequent qubits.

Since the correct 𝜑
~

 is not yet known, a brute force enumeration of all possible 𝐶𝑅(𝑘) is used, and

the specific effect is as follows:

∏ 𝐼 ⊗ 𝐶𝑅(𝑘)

2
𝑡−1

𝑘=1

∑𝛽𝑗|𝑢𝑗⟩|𝜑𝑗

~
⟩|0⟩

𝑁

𝑗=1

= ∑𝛽𝑗|𝑢𝑗⟩|𝜑𝑗

~
⟩(√1− (

𝐶

𝜆𝑗
)

2

|0⟩ +
𝐶

𝜆𝑗
|1⟩)

𝑁

𝑗=1

(11)

Applying the inverse QPE once more, the overall quantum state is as follows:

|𝜓⟩ = ∑𝛽𝑗|𝑢𝑗⟩|0⟩
⊗𝑡(√1− (

𝐶

𝜆𝑗
)

2

|0⟩ +
𝐶

𝜆𝑗
|1⟩)

𝑁

𝑗=1

(12)

2.5. Framework of quantum circuits

The overall framework of HHL is shown in Figure 2. qc defines the qubits used for QPE, qb defines

the qubits representing vector �⃗� . In order to make the quantum circuit structure clear, QPE and

controlled selection module are encapsulated here (quantum phase estimation is a unitary operation

in general, and quantum phase inversion part can be obtained by QPE module mirror).

Figure 2: Quantum linear Computing Circuit

The framework of quantum phase estimation is shown in Figure. 3, QFT is the encapsulation of

inverse quantum Fourier transform, and 𝑈𝑗 represents the controlled 𝑈𝑗 operation of the target

register with the quantum bits in the phase register as the control bits one by one.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

104

Figure 3: Quantum phase Estimation circuit

In the HHL algorithm, the goal of controlled unitary operation is to realize the time evolution

𝑒−𝑖𝐴𝑡 of matrix 𝐴, and extract its eigenvalues through quantum phase estimation. This process

depends on the controlled relationship between the control qubit and the target quantum state. In this

paper, the time evolution of matrix is simulated by controlled Z rotation gate (𝐶𝑅𝑍). For matrix 𝐴,

the quantum state is evolved in time as follows:

𝑈(𝑡) = 𝑒−𝑖𝐴𝑡 (13)

This is the evolution of 𝐴 quantum state under the action of a matrix 𝐴, where 𝑡 is a time

parameter and i is an imaginary unit. To extract the eigenvalues from the matrix 𝐴, different powers

of this time evolution operator are applied in the quantum phase estimation step: 𝑈𝑗 = 𝑒−𝑖𝐴𝑡𝑗 , where

𝑡𝑗 is the time step corresponding to the phase estimation qubit. In a quantum circuit, the controlled

unitary operation needs to apply different times of 𝑈𝑗 according to the state of the control qubit.

𝐶𝑅𝑍 is used to approximately realize this operation. The function of 𝐶𝑅𝑍(𝜃) is to perform a Z-axis

rotation of the target quantum state with a rotation Angle of 𝜃, which can be expressed as follows:

𝐶𝑅𝑍(𝜃) = (
1 0

1 𝑒𝑖𝜃) (14)

Where the rotation Angle 𝜃 = −2𝑑𝑡 is related to the time step 𝑑𝑡, and the phase information

associated with the matrix 𝐴 is gradually accumulated through 2
𝑖
 controlled rotations. This phase

information is subsequently decoded via an inverse quantum Fourier transform to extract matrix

eigenvalues, which are ultimately used to solve linear systems of equations.

3. Multi-dimensional nonlinear feature space processing

When dealing with multi-dimensional nonlinear feature data, to avoid the high memory occupation

and computational complexity caused by the explicit calculation of feature vectors in high-

dimensional space. In this paper, the kernel method is used to map the data from the original space to

a high-dimensional feature space, which is achieved by computing the kernel matrix. Each element

of the kernel matrix represents the inner product between two samples in high-dimensional space. In

this paper, Using the linear kernel function 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗 and radial basis function (RBF kernel)

𝐾(𝑥𝑖, 𝑥𝑗) = exp⁡(−
||𝑥𝑖−𝑥𝑗||

2

2𝜎2
) process of linear and nonlinear can be divided into data respectively.

Where 𝜎 is a parameter that controls the width of the RBF kernel.

The kernel matrix 𝐾 is derived by calculating the similarity between samples, and each element

𝐾𝑖𝑗 represents the inner product of the training samples 𝑥𝑖 and 𝑥𝑗 in a high-dimensional feature

space, without explicitly calculating the coordinates of the whole high-dimensional space. Suppose

the samples in the training set are {𝑥1, 𝑥2, 𝑥3 …𝑥𝑛}, each 𝑥𝑖 is a 𝑑-dimensional vector, and the kernel

matrix 𝐾 is an N × N symmetric matrix whose entries 𝐾𝑖𝑗 are defined by

𝐾𝑖𝑗 = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) (15)

Where 𝜙 is a mapping function from the original input space to a high-dimensional feature space,

and the kernel 𝐾(𝑥𝑖, 𝑥𝑗) is defined as follows:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

105

𝐾(𝑥𝑖, 𝑥𝑗) = 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉 (16)

The kernel function can compute the inner product of two samples in the high-dimensional feature

space without explicitly constructing the mapping 𝜙. For each pair of samples (𝑥𝑖, 𝑥𝑗), 𝐾(𝑥𝑖, 𝑥𝑗) is

calculated through the kernel function, and the corresponding position 𝐾𝑖𝑗 of the kernel matrix is

filled to complete the calculation of the kernel matrix 𝐾 [9].

4. Implementation of support vector machine calculation acceleration

After kernel method mapping, the data that cannot be linearly classified in the original space can be

found in a linearly separable hyperplane in the high-dimensional feature space. However, with the

growth of the data set, the computational complexity of the kernel matrix increases rapidly in the face

of large sample size and high-dimensional features, which brings significant computational overhead.

In order to cope with this problem, this paper proposes to introduce quantum computing to accelerate

the calculation of kernel matrix, and use the HHL algorithm to significantly accelerate the linear

system solution.

Using the property of quantum coherent superposition, for solving the linear equation system of

kernel matrix 𝐾: 𝐾𝛼 = 𝑏, where 𝐾 is the kernel matrix, 𝛼 is the Lagrange multiplier, and 𝑏 is the

polarization term. Compared with the classical solution, the time complexity grows polynomial-ly

with the increase of the number of samples, which is usually 𝑂(𝑛3) level, the quantum computing

acceleration reduces the complexity to the exponential level, namely O(log𝑛).

Firstly, the kernel matrix 𝐾 is calculated by the kernel method, and the matrix 𝐾 and vector �⃗�
are encoded into quantum states |𝑘⟩ and |𝑏⟩. Through quantum phase estimation, the eigenvalue

information of matrix 𝐾 is obtained by the HHL algorithm, so as to invert the matrix. The algorithm

constructs the inverse of the matrix by reverse operation, and finally obtains the quantum state

representation of 𝛼

|𝛼⟩ = 𝐾−1|𝑏⟩ (17)
By decoding the quantum states, the corresponding solution can be obtained. It greatly improves

the efficiency of solving the kernel matrix in the classical SVM, especially in the processing of large-

scale high-dimensional data.

5. Experimental results and analysis

5.1. Error analysis

In the HHL algorithm, the time evolution 𝑒−𝑖𝐴𝑡 is approximately realized by the controlled revolving

gate 𝐶𝑅𝑍 , which can only be approximated infinitely. In this study, the approximation error is

specified as follows:

In terms of the approximation error of the discrete time evolution, since the time evolution of the

matrix cannot be directly and accurately realized, this study approximates the simulation by a series

of discrete controlled rotation gates. Each time the 𝐶𝑅𝑍 gate is applied, the actual rotation performed

by the system is a discrete time step dt. The step size of the time evolution operator is as follows:

𝑈(𝑡) = 𝑒−𝑖𝐴𝑡 ≈ ∏𝑒−𝑖𝐴∆𝑡

𝑁

𝑗=1

(18)

Approximation error analysis For 𝑑𝑡, the Taylor series expansion of Equation (18) is carried out

to evolve in 𝑛 time steps, and the overall evolution operator is as follows: 𝑈(𝑡) = 𝐼 − 𝑖𝐴𝑡 +
(−𝑖𝐴𝑑𝑡)2

2
𝑛 + 𝑂((𝑑𝑡)3), where 𝑛 =

𝑡

𝑑𝑡
, the approximation error mainly comes from the higher order

terms, then the approximation error of the time evolution operator can be obtained as follows:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

106

𝜖𝑈 =
𝑡2

2
‖𝐴‖2 ∙

1

(𝑑𝑡)2
(19)

Where ∆𝑡 =
𝑡

𝑁
 is the time step is the number of steps. This discretization introduces an error

proportional to the step size ∆𝑡, typically 𝑂(∆𝑡2). If the number of time steps 𝑁 is large enough, the

error can become small, but at the same time it will increase the circuit depth and complexity.

The approximation of the time evolution depends on the range of eigenvalues of the matrix 𝐴. If

the eigenvalue 𝜆𝑖 of matrix 𝐴 has a large span, the error will be amplified. The larger the eigenvalue

is, the faster the change of the phase factor 𝑒−𝑖𝜆𝑖𝑡 in the time evolution operator, and the discrete-

time evolution approximation of these phases will produce large errors. The relationship between the

estimated error and the eigenvalue size is as follows:

𝜖𝜆 =
∆𝑡

𝜆𝑚𝑎𝑥

(20)

Where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of matrix 𝐴. When the eigenvalues are large, a smaller time

step ∆𝑡 is required to keep the error small.

The accuracy of quantum phase estimation is limited by the number of QPE qubits. QPE performs

phase estimation through finite number of qubits, and the estimation accuracy is proportional to the

number of qubits 𝑡. If t qubits are used, the error in phase estimation is as follows:

𝜖𝑄𝑃𝐸 =
2𝜋

2𝑡
(21)

In the concrete implementation, the 𝐶𝑅𝑍 controlled rotation gate itself may be affected by

hardware implementation errors and noise. On practical quantum hardware, the precision of gate

operation may lead to additional errors due to noise and imprecision of gate operation.

Considering the above errors, the total error of the HHL algorithm can be approximately expressed

as follows:

𝜖𝑡𝑜𝑡𝑎𝑙 = 𝜖𝑈 + 𝜖𝜆 + 𝜖𝑄𝑃𝐸 (22)

The total error depends on the number of time steps 𝑁, the number of qubits 𝑡, the range of matrix

eigenvalues, and the specific hardware noise. If the number of qubits 𝑡 used is small or the eigenvalue

𝜆𝑚𝑎𝑥 is large, a finer time step or more QPE qubits are needed to reduce the error.

5.2. Dataset and experimental results

In this study, the classification performance of QSVM was compared with SVM in a

multidimensional nonlinear feature space. The paper used the Iris dataset, which contains 150 samples

covering three species of iris (Iris mountain, Iris variatum, and Iris Virginia) with 50 samples per

species[10]. Three dimensional, four dimensional, five dimensional and six dimensional feature

subsets are extracted for testing. The three dimensional features include calyx length, calyx width and

petal length, and the other dimensions add petal width features to evaluate the influence of different

dimensions on the classification effect. Due to the bottleneck of quantum computing hardware

technology, the linear solution has stability problems, so the ratio of calculation accuracy to

calculation time is used as the index for performance evaluation. Using IBM qiskit development

platform[11]. The model performance is shown in Figure 4:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

107

Figure 4: Performance data

The experimental results show that the classification accuracy of QSVM is generally higher than

that of classical SVM on these data sets. In particular, when handling high-dimensional and nonlinear

features, QSVM demonstrates superior classification capabilities. In terms of computation time and

memory requirements, QSVM shows significant advantages, especially when dealing with large-

scale datasets.

6. Conclusion

In this paper, the acceleration method of quantum computing for SVM in multi-dimensional nonlinear

feature space is studied, and a new algorithm combining the advantages of classical and quantum

computing is proposed. Experimental results show that QSVM outperforms classical SVM in terms

of classification performance, computation time and memory requirements. However, the practical

application of quantum computing still faces numerous challenges, including the maturity of quantum

hardware and the correction of quantum errors. Future research can further explore more efficient

quantum mapping algorithms and quantum circuit optimization methods to improve the performance

and practicability of QSVM.

References

[1] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In COLT

'92: Proceedings of the fifth annual workshop on Computational learning theory.

[2] Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum Support Vector Machine for Big Data Classification.

Physical Review Letters, 113(13), 130503.

[3] Aram, W. H., Avinatan, H., Seth, L. (2008). Quantum algorithm for solving linear systems of equations. Quantum

Physics.

[4] Wang, Y., Li, G., & Wang, X. (2023). A hybrid quantum-classical Hamiltonian learning algorithm. Science China

(Information Sciences), 66(2), 295-296.

[5] Yue, T., Wu, C., Liu, Y., Du, Z., Zhao, N., Jiao, Y., Xu, Z., & Shi, W. (2023). HASM quantum machine learning.

Science China (Earth Sciences), 66(9), 1937-1945.
[6] Wang, S., Zhang, K., & Zhang, L. (2020). Research on the decomposition of unitary operators in quantum circuits.

Natural Science Journal of Heilongjiang University, 37(6), 653-660.

[7] Papadopoulos, N. J. C., Reilly, J. T., Wilson, J. D., & Holland, M. J. (2024). Reductive quantum phase estimation.

Physical Review Research, 6(3), 033051.

[8] Wong, H. Y. (2023). Quantum Fourier Transform I. In Introduction to Quantum Computing (pp. 243-253).

[9] Pedrycz, W. (2002). Advances in Kernel Methods. Support Vector Learning, by B. Scholkopf, C. J. C. Burges, and

A. J. Smola. Neurocomputing, 47(1), 303-304. ISBN 0-262-19416-3.

[10] Dua, D. and Graff, C. (2019). Iris Data Set. UCI Machine Learning Repository. Available at:

https://archive.ics.uci.edu/ml/datasets/iris

7.5

8

8.5

9

9.5

10

3D data 4D data 5D data 6D data 7D data

Performance comparison between QSVM and SVM

QSVM SVM

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

108

[11] Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J., Lishman, J., Gacon, J., Martiel, S., Nation, P. D., Bishop,

L. S., Cross, A. W., Johnson, B. R., & Gambetta, J. M. (2024). Quantum computing with Qiskit.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/100/2025.17860

109

