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Abstract. In recent years, due to the rapid development of deep learning, it has been found that 

deep learning has shown good experimental results in traffic flow prediction, and is significantly 

better than traditional traffic flow prediction methods. This paper mainly classifies, sorts out, 

and summarizes the classic techniques and research status of traffic flow prediction based on 

deep learning. According to the length of traffic flow data, the traffic flow prediction method 

based on deep learning is further subdivided into long traffic flow prediction method and short 

traffic flow prediction method. The representative models of the two traffic flow prediction 

methods are analyzed and introduced in detail. Each representative model is expanded and 

extended, and the performance evaluation indicators of the long and short traffic flow prediction 

models are introduced. Finally, the possible future research directions and corresponding 

development trends in this field are summarized. 
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1.  Introduction 

Traffic flow prediction refers to the utilization of various data analysis techniques and models to forecast 

road traffic conditions at a specific future time point or within a given period. It is pivotal in intelligent 

transportation systems, urban planning, traffic management, and public travel arrangements. Accurate 

traffic flow predictions empower traffic managers to conduct effective traffic guidance and engineering 

designs, thereby mitigating congestion and enhancing road utilization efficiency. Simultaneously, they 

assist individuals and enterprises in making more rational travel and logistics plans, saving time and 

costs. Based on the prediction object, traffic flow prediction can be categorized into short-term and long-

term predictions. 

Short-term traffic flow prediction typically involves forecasting traffic volume, speed, occupancy 

rate, and other parameters within the next few hours to a day. This type of prediction guides real-time 

or near-real-time traffic management and travelers, enabling them to make more informed decisions. 

Short-term prediction models need to swiftly respond to changes in traffic conditions, such as accidents, 

construction works, or special events causing congestion. Common methodologies include time series 

analysis, machine learning algorithms (e.g., Support Vector Machines, Random Forests, Neural 
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Networks), and deep learning approaches like Recurrent Neural Networks (RNNs) and Long Short-

Term Memory Networks (LSTMs). 

In contrast, long-term traffic flow prediction focuses on traffic trends and patterns over the next few 

days, weeks, or even months. This prediction is crucial for traffic planning, infrastructure investment 

decisions, large-scale event planning, and strategic traffic management. Long-term prediction faces 

challenges like capturing periodic patterns (e.g., seasonal variations, holiday effects) and trends. These 

models must consider additional external factors like seasonal changes, economic growth, and 

population migration. Traditional statistical models (e.g., ARIMA), machine learning methods, and deep 

learning models like Convolutional LSTM (ConvLSTM) and Spatio-Temporal Convolutional Neural 

Networks (STCNN) are commonly employed. 

The current literature on the prediction of long and short traffic flows is not comprehensive. This 

paper summarizes deep learning-based traffic flow prediction methods, including representative models 

for both long-term and short-term predictions, and performance evaluation metrics, and explores future 

research directions and development trends. 

2.  Analysis of long traffic flow methods 

For long-term traffic flow prediction, the primary issue lies in the accumulation of errors over time. 

Many predictive models rely on iterative methods, where each predicted value is fed back as new input. 

As the prediction window slides, the proportion of real data decreases while predicted data increases, 

leading to error amplification. To address this, the ACE-D model [1] has been proposed (Figure 1). 

The ACE-D model is a deep-learning architecture tailored for long-term traffic flow prediction. It 

employs an encoder-decoder structure built upon LSTM, where the encoder encodes the input traffic 

flow data sequence into semantic vectors, and the decoder translates these vectors into future traffic flow 

predictions. To enhance the model's ability to capture long-term dependencies, ACE-D incorporates a 

hard attention mechanism. This mechanism leverages a chain address search algorithm to swiftly 

identify patterns in historical data similar to the current prediction window. The search considers both 

periodic features and a forward search strategy to ensure useful information retrieval even when periodic 

features are obscure. Upon finding similar patterns, the model learns from their characteristics to assist  

predictions, strengthening its memory of long-term trends. 

 

Figure 1. Schematic diagram of the ACE-D model [1] 

Furthermore, to refine and correct predictions, ACE-D adds a calibration layer to the decoder's output. 

This layer utilizes a control gate mechanism to categorize traffic flow data based on their magnitudes. 
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For low-magnitude (i.e., stable) data, the model directly outputs predictions, while for high-magnitude 

(i.e., volatile) data, the calibration layer adjusts them to enhance prediction detail accuracy. 

By combining hard attention and a calibration layer, the ACE-D model effectively mitigates error 

accumulation in long-term predictions while maintaining sensitivity to traffic flow trends, demonstrating 

high accuracy and stability in long-term traffic flow prediction tasks. 

However, it has potential shortcomings in terms of computational complexity and parameter 

sensitivity. The D-STN model [2], on the other hand, may provide improvements in these areas through 

its simplified architecture and training mechanism. (Figure 2) 

The D-STN method is specifically designed to optimize the accuracy of long-term mobile traffic 

flow predictions by integrating two powerful deep learning architectures: ConvLSTM and 3D-ConvNet. 

It excels at capturing and analyzing complex spatio-temporal patterns in traffic data while demonstrating 

significant advantages in terms of computational complexity and parameter sensitivity. 

 

Figure 2. Schematic diagram of the D-STN model [2] 

To address the common issue of cumulative errors in long-term predictions, D-STN introduces the 

Ouroboros Training Scheme (OTS), an innovative training mechanism that feeds the model's predictions 

back into the input during training, enabling continuous self-correction and enhancing its ability to 

predict long-term trends. Furthermore, D-STN employs a decay mechanism that gradually reduces the 

weight of model predictions and increases the weight of historical data averages, thereby mitigating 

prediction errors over time. 

A notable feature of D-STN is its exceptional generalization ability, allowing the model to not only 

perform effectively on training data but also adapt to different geographical locations and traffic 

conditions, crucial for network management and resource allocation in practical applications. Overall, 

D-STN significantly improves the accuracy of long-term mobile traffic flow predictions through its 

advanced deep learning architecture and innovative training strategies, providing a powerful tool for 

traffic engineering and network optimization. 

Although D-STN has advantages in terms of prediction accuracy and stability, its complex model 

structure can lead to reduced efficiency when dealing with complex traffic flow patterns. In contrast, the 

STCNN model [3] has stronger spatio-temporal capturing capabilities compared to D-STN (Figure 3). 

Proceedings of  CONF-MLA 2024 Workshop:  Mastering the Art  of  GANs: Unleashing Creativity with Generative Adversarial  Networks 
DOI:  10.54254/2755-2721/111/2024.CH17877 

193 



 

 

Specifically, the STCNN method is an innovative spatio-temporal convolutional neural network 

architecture tailored for long-term traffic flow prediction. It adopts a classic encoder-decoder structure: 

During the encoder phase, STCNN first processes spatio-temporal flow data spanning consecutive days 

using ConvLSTM networks. This data encompasses traffic flow information from various locations 

within the network, capturing dynamic characteristics that evolve and transforming them into spatio-

temporal hidden states, representing the general spatio-temporal dependencies of traffic flow. To further 

explore periodic traffic flow patterns, STCNN designs a Skip-ConvLSTM model that specifically 

processes skipped time series data (e.g. the same day of each week) to extract periodic flow patterns. 

These patterns are crucial for understanding and predicting long-term traffic flow changes. 

 

Figure 3. Schematic diagram of the STCNN model [3] 

During the decoder phase, STCNN employs another ConvLSTM network that decodes the 

spatiotemporal hidden states generated by the encoder, progressively generating future spatiotemporal 

hidden states for the upcoming week. These hidden states not only reflect the general spatio-temporal 

characteristics of traffic flow but also integrate the periodic flow patterns captured during the encoder 

phase. Finally, a Convolutional Neural Network (CNN) is utilized for the ultimate flow prediction. In 

this way, STCNN considers both daily spatio-temporal variations and periodic factors, enabling more 

precise and long-term traffic flow predictions. Experimental results demonstrate that the STCNN 

method outperforms other traditional and advanced prediction models, exhibiting superior prediction 

performance across multiple datasets. 

3.  Analysis of short traffic flow methods 

3.1.  Short-distance traffic flow prediction based on CNN 

These methods typically transform traffic flow data into a time series input, extract local and global 

features through convolutional layers, and use these features to predict future traffic flow. The model 

architecture includes an input layer, convolutional layers, pooling layers, fully connected layers, and an 

output layer. During training, the mean squared error is used as the loss function, and parameters are 

adjusted via an optimizer. 

Zhang, Zhu, and others [4] proposed a spatio-temporal feature selection algorithm (STFSA) based 

on CNN. The STFSA algorithm selects the optimal spatio-temporal data as input for the CNN model by 

analyzing the spatio-temporal correlations in traffic data. It first converts the selected spatio-temporal 

data into a two-dimensional matrix and feeds it into the CNN model. The CNN then extracts and learns 

features from the input data to complete the traffic flow prediction. However, the prediction performance 

of the CNN model is highly dependent on parameter selection, and the algorithm does not account for 

other influential factors. It focuses solely on spatio-temporal characteristics, ignoring key factors such 
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as weather and road conditions. Consequently, the trained model is very sensitive to abnormal data and 

easily affected by noise.  

Later, Sun, Wu, and others [5] introduced a multi-branch model called Traffic Flow Forecasting 

Network (TFFNet) (as shown in Figure 4), which combines deep convolutional neural networks (CNNs) 

and residual networks (ResNets). TFFNet also incorporates a novel data preprocessing method to 

calculate city-wide and suburban traffic flow based on taxi GPS trajectories. Additionally, TFFNet 

considers both temporal and spatial dependencies and integrates external influencing factors, thereby 

addressing the issue of the trained model being susceptible to noisy data and improving prediction 

accuracy.  

 

Figure 4.TFFNet architecture. Conv: convolution layer; FC: fully connected layer [5]. 

Chen, Yang, and others [6] proposed a prediction model with high prediction accuracy and low 

computational complexity (Spatio-temporal Decoupled 3D DenseNet with Attention ResNet, 

abbreviated as ST-D3DDARN). The ST-D3DDARN model established four branches, namely 

proximity, cycle, trend, and external factors, and adopted a decoupled 3D convolutional neural network 

(3D CNN), which solved the problems of long training time and slow convergence speed of traditional 

3D CNN models. Finally, to deal with the complex spatial correlation of urban traffic flow, the model 

designed a residual network that combines spatial self-attention and coordinate attention mechanisms. 

3.2.  Short-term traffic flow prediction based on RNN 

LSTM is a special type of RNN. The model controls the transmission and forgetting of information by 

introducing "memory units" and "gating mechanisms" (including input gates, forget gates, and output 

gates), and can effectively capture long-term dependencies. First, the historical traffic data is converted 

into a time series and input into the model. Then, the long-term and short-term dependencies in the data 

are captured through the LSTM layer, and the prediction results are output using the fully connected 

layer. During the training process, the mean square error is used as the loss function, and the model 

parameters are adjusted through the optimizer. Finally, the model is evaluated and optimized on the test 

data. 

Li, Zhang, and others [7] compared RNN with three different RNN structural units - long short-term 

memory network (LSTM), gated recurrent unit (GRU), and autoencoders (SAEs). First, the data was 

preprocessed and normalized. Then the data was put into different models for model construction and 

training. The results showed that RNN had a good effect on traffic flow prediction for specific roads and 

could achieve short-term prediction. Among them, LSTM had the smallest prediction error and 

performed best, so it can be concluded that LSTM is the best model among RNN variants. 

Subsequently, Zhang, Cheng, and others [8] proposed an improved genetic algorithm-optimized 

LSTM model (IGA-LSTM) (as shown in Figure 5), which improves the optimization effect by 

improving the standard genetic algorithm and dynamically adjusting the mutation rate and crossover 
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rate. The improved genetic algorithm (IGA) is used to optimize multiple parameters in the LSTM model 

(such as the number of hidden units, the number of training rounds, etc.), making the IGA-LSTM model 

outperform the traditional LSTM model in terms of convergence speed and prediction accuracy. 

 

Figure 5. Framework diagram of traffic flow forecast by the IGA-LSTM model [8]. 

Zhang, Jiang, and others [9] proposed a graph convolution long short-term memory network (AGC-

LSTM) model enhanced by the attention mechanism, which captures the spatial dependence between 

flight segments by using a graph convolution network (GCN), and then uses an LSTM layer to capture 

the dependencies between times. The attention mechanism is introduced into the GCN to help the model 

focus on some key nodes in the route network in each layer. Moreover, the model also performs multi-

step predictions to ensure the robustness of the model in different prediction periods. This model 

significantly improves the accuracy of short-term traffic flow prediction by combining the spatial feature 

extraction capabilities of GCN, the time series processing capabilities of LSTM, and the key feature 

focusing of the attention mechanism. 

3.3.  Hybrid traffic flow prediction based on CNN and LSTM 

The hybrid model effectively combines the advantages of CNN and LSTM to achieve traffic flow 

prediction. Initially, the model inputs historical traffic data—such as traffic flow, speed, and density—

into a CNN layer to extract the spatial relationships among various traffic parameters. The spatial 

features extracted are then passed to the LSTM network to capture temporal dependencies across 

different time slices, allowing for a comprehensive analysis of traffic flow. 

In this regard, Pervez Khan and colleagues [10] proposed a more complex hybrid architecture that 

integrates CNN, LSTM, and Transposed CNN. This model starts with a traffic congestion map sourced 

from the Seoul Transportation Operation and Information Service (TOPIS). Compared to traditional 

models, it extracts spatial features through CNN first, followed by using LSTM to analyze historical 

traffic flow relationships. Finally, the processed features are fed into the Transposed CNN, which 

transforms low-dimensional time series features into high-resolution traffic congestion images for 

prediction. This multi-layered processing enables a more precise prediction of traffic conditions. 

However, due to the integration of multiple networks, this model has a high computational complexity 

and often deals with a significant amount of irrelevant information during the learning process, leading 

to increased consumption of computational resources. 
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To further optimize this process, Liu, Ma, and colleagues [11] introduced the CCSANet model(as 

shown in Figure 6), which combines the Correlation Convolutional Long Short-Term Memory Network 

(Corr-ConvLSTM) with a self-attention mechanism. First, the Corr-ConvLSTM model calculates the 

correlations between continuous traffic features, enhancing the ability of ConvLSTM to capture 

continuous spatial characteristics. The ConvLSTM then simultaneously extracts spatial and temporal 

features, better reflecting the spatiotemporal relationships. Finally, by incorporating the self-attention 

mechanism, the model can take into account external factors influencing network traffic. This series of 

improvements enables CCSANet to simultaneously capture complex spatiotemporal features, ultimately 

enhancing the accuracy of network traffic prediction. 

 

Figure 6. Overview of the proposed CCSANet [11]. 

Ali Reza Sattarzadeh and others [12] proposed a new hybrid deep learning model (SAACL) that 

combines the ARIMA model, convolutional long short-term memory network (Conv-LSTM), and 

shuffle attention mechanism (Shuffle Attention Layer). The paper introduced a new attention 

mechanism, Shuffle Attention, which assigns different weights to different traffic flow sequences, so 

that the model can automatically identify the importance of each period and location to the overall 

prediction, thereby improving the prediction performance. The ARIMA model and the Bi-LSTM model 

were also introduced. The ARIMA model is used to extract linear features in traffic flow data, and the 

Bi-LSTM model is used to capture periodic features in traffic flow. By combining these models, this 

new hybrid deep learning model can better capture the complex features in traffic flow data and improve 

the accuracy of prediction. 
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4.  Method performance comparison 

4.1.  Analysis of methods based on long-distance traffic flow prediction 

Table 1. Advantages and disadvantages of long-distance traffic flow prediction methods 

Model Advantages Disadvantages 

D-STN 

High accuracy and stability in 

long-term forecasting 

Combines STN predictions 

with historical statistic 

Suitable for different regions 

and conditions 

Complex model structure 

May require substantial 

computational resources 

STCNN 

Strong spatiotemporal 

capturing ability Specifically 

designed for traffic flow data 

Suitable for real-time or near-

real-time forecasting 

May require adjustment to 

adapt to new traffic pattern 

Might be slightly inferior to D-

STN in long-term forecasting 

ACE-D 

Accuracy and stability 

Uses attention mechanism to 

enhance forecasting accuracy 

Suitable for long-term 

sequence forecasting 

May be sensitive to parameter 

adjustments 

May be less efficient when 

dealing with very long 

sequences 

 

D-STN excels at long-term traffic forecasting with its complex model that combines predictions with 

historical data, although it may be computationally intensive (Table 1). STCNN is superior for real-time 

traffic analysis by capturing spatiotemporal relationships but might need tuning for new traffic patterns 

and may not match D-STN for the longest forecasts. ACE-D balances accuracy and stability using an 

attention mechanism to focus on historical traffic similarities, yet it could be inefficient for very long 

sequences and sensitive to parameter adjustments. Collectively, these models can form a robust 

predictive system, with D-STN offering long-term views, STCNN providing real-time insights, and 

ACE-D ensuring stability across different prediction horizons. 

4.2.  Analysis of methods based on short-distance traffic flow prediction 

The experimental comparison of short traffic flow prediction methods is shown in Table 2. The main 

comparison factors include experimental data sets and evaluation indicators. 

Table 2. Experimental comparison of short traffic flow prediction on Caltrans PeMS 

Model 
Time step:5 min Time step:15 min Time step:30 min Time step:60 min 

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

CNN 15.14 11.30% 21.93 16.02 12.96% 22.14 17.12 14.60% 23.45 20.67 15.80% 27.04 

LSTM 14.77 11.10% 20.05 16.50 12.40% 22.57 19.00 14.70% 25.59 23.60 18.30% 30.75 

DNN-BTF 14.05 10.90% 19.32 15.55 11.50% 21.37 16.97 12.80% 23.06 19.12 14.80% 25.88 

DCRNN 13.79 10.70% 18.88 14.79 11.50% 20.43 16.05 12.40% 22.18 18.43 14.20% 25.74 
SAACL 13.36 9.60% 17.86 14.74 10.60% 19.84 15.26 11.90% 20.82 16.38 12.70%  

As can be seen from Table 2, the prediction results of the five models at different times are compared, 

and the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square 

error (RMSE) of each model in each period are shown. The experimental data comes from the California 

Department of Transportation’s (Caltrans) Performance Measurement System (PeMS). Among the 

methods for short-term traffic flow prediction, the prediction results of the CNN model are not as good 

as those of other models in each period, but because it was proposed earlier and many models are 

improved based on CNN, it is widely used in traffic flow prediction models. Although the DCRNN 

model performs well in short-term predictions, it slightly decreases in long-term predictions. The LSTM 

model is less effective in dealing with long-term time dependencies. The SAACL model shows the best 
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prediction performance at all time steps, with the highest prediction accuracy and stability, but because 

it integrates multiple models, the model structure is complex, the demand for computing resources is 

high, and the training time of the model is long. 

5.  Future development trends 

Nowadays, deep learning technology has been widely used in the field of traffic flow prediction. 

However, there are still some problems with traffic flow prediction, such as the complexity of 

spatiotemporal feature modeling, the difficulty of multimodal data fusion, adversarial training 

robustness enhancement, etc. 

5.1.  Long-Term traffic flow prediction future development trends 

Enhanced Model Robustness Improving model resilience against noise and missing data is crucial. 

This can be achieved through techniques like data augmentation, anomaly detection, attention 

mechanisms, and adversarial training to ensure accurate predictions even with imperfect data. 

Lightweight and Real-Time Models With the advancement of 5G and 6G networks, there is a need 

for models that are not only accurate but also lightweight and capable of real-time performance. 

Research may focus on developing new network architectures, applying knowledge distillation, or 

employing model pruning to reduce computational complexity and resource requirements. 

Integration of Multimodal Data Future models may integrate diverse data sources such as social 

media, weather data, and economic indicators to enhance prediction accuracy by capturing a broader 

range of influencing factors. 

5.2.  Short-Term traffic flow prediction future development trends 

Enhance the robustness of the model In the real world, traffic flow data is often affected by noise or 

missing data. Improving the robustness of the model is an important development direction. In the future, 

we can study the use of data enhancement, anomaly detection, attention mechanism, adversarial training, 

and other technical methods to improve the prediction accuracy of the model when facing abnormal data. 

Lightweight and real-time model With the rapid development of 5G and 6G networks, network 

traffic prediction models face the dual challenges of real-time performance and computational efficiency 

in applications. Therefore, how to design lightweight, computationally efficient, and highly accurate 

models is an important development direction in the future. In the future, new network architectures, 

knowledge distillation, or model migration methods can be used to reduce the computational complexity 

and storage requirements of the model. 

6.  Conclusion 

This paper reviews deep learning-based traffic flow prediction methods, providing an in-depth analysis 

of classic models for both long-term and short-term traffic flow predictions, along with their respective 

advantages and disadvantages. In long-term forecasting, models such as D-STN, STCNN, and ACE-D 

stand out, each with its strengths: D-STN is accurate and stable for long-term predictions, STCNN is 

adept at real-time analysis and capturing spatio-temporal relationships, and ACE-D balances accuracy 

and stability through an attention mechanism. For short-term predictions, models like LSTM and CNN 

show varying performance at different time steps, with the SAACL model demonstrating the highest 

prediction accuracy and stability across all time steps. However, these models still face challenges such 

as data noise and computational efficiency in practical applications. 

In the future, enhancing model robustness and developing lightweight, real-time models will be key 

directions for development. Technical approaches like data augmentation, anomaly detection, and 

attention mechanisms can improve model prediction accuracy in the face of abnormal data. Moreover, 

with the rapid development of 5G and 6G networks, designing models that are computationally efficient 

and capable of real-time performance will become increasingly important. 
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