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Abstract. Dynamic Difficulty Adjustment (DDA) is a crucial task in video game design to select 

the appropriate difficulty level to maintain player engagement. Recent studies have highlighted 

the importance of developing adaptive systems that balance challenge and enjoyment. This paper 
explores the application of Multi-Armed Bandit algorithms to DDA, providing a computationally 

efficient and explainable solution to real-time difficulty adjustment. A numerical game engine 

was built with a damage calculator and a linear attribute generator for players and monsters. The 

study tested four Multi-Armed Bandits (MAB) algorithms: epsilon-greedy, Upper Confidence 

Bound, Asymptotically Optimal Upper Confidence Bound, and Thompson Sampling within the 

DDA framework. Results showed that all MAB algorithms successfully identified the optimal 

difficulty within 100 trials, and on average, players won their battles in more than 150 rounds. 

These results demonstrate the strong performance of MAB algorithms in dynamic difficulty 

adjustment and indicate the potential for implementing them in more complex gaming 

environments. The findings suggest that MAB could significantly enhance the adaptability and 

efficiency of DDA systems in future game development. 
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1.  Introduction 

Dynamic Difficulty Adjustment (DDA) is a mechanism in game design that allows modifying the 

difficulty in real-time to keep players fully engaged, according to their interactions with the environment 

and historical performance. The basic idea is to avoid settings that are either too simple or too hard since 
high difficulty can lead to frustration, while low difficulty causes boredom for players [1]. DDA can be 

formulated as a one-step prediction task. Such a balancing system aims to design reward functions for 

engagement and make predictions based on previous information. Efficiency and effectiveness are 
required for the system to be deployed on online and offline video game engines. 

A line of studies utilizes probabilistic decision-making models to design DDA systems. Ranking 

systems like ELO and TrueSkill utilize interval estimation, resulting in a score on the ladder, where 
players with close rankings are more likely to be matched [2]. The ultimate goal is to keep the average 

winning rate near enough to 50% to make a fair matchmaking system. This performance evaluation 

system has been widely adopted in competitive games or e-sports. Advanced decision-making models 

are also integrated into DDA designs. The Progression Model incorporates Markov Transitions in 
reward calculation, selecting the best difficulty based on the decision graph [3]. Another mainstream 

idea for DDA systems involves training reward models based on observed experience. DL-DDA  studied 
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offline learning strategies such as clustering for different players and training deep neural networks for 

prediction tasks [4]. Reinforcement Learning methods like Deep Q-learning are also suitable for the task 

since the reward function can be linked to Q-functions in online training [5]. 
There are shortcomings in those two performance evaluation ideas. For probabilistic DDA systems 

like ELO and TrueSkill, the boundary of the confidence interval for their estimated result highly depends 

on the empirical variance selection for the Gaussian distribution, and depends only on one-shot 
experience without sufficiently exploiting each player's performance. For learning methods based on the 

observed data and performance, prediction models fully exploited correlations and similarities among 

different groups of players in DL-DDA, and historical performance with Deep Q-learning [4, 5]. 

However, they suffer from distribution shifts in decision-making since players act differently towards 
other opponents. 

To find a highly adaptive and explainable algorithm for DDA, Multi-Armed Bandit (MAB) 

algorithms are leveraged in this study, which are simple but very powerful for algorithms that make 
decisions over time under uncertainty [6]. Compared to ELO and TrueSkill, MAB could simultaneously 

control the confidence interval and learn the true distribution for players’ performance with explainable 

difficulty choice. MAB is a real-time online learning method for game engines rather than neural 
networks with heavy parameters for offline training. Another advantage for MAB is the complete 

architecture of regret analysis, which reduces problems like DDA to a uniform model setting. To give a 

solid analysis of MAB, this study proposed a precisely balanced game engine to show whether different 

MAB algorithms are capable of DDA problems. 

2.  Method 

2.1.  Environment setting 

A game engine was designed to simulate tournaments between two units. The engine adapts a one-player 
and one-monster Player versus Environment (PvE) setting. Both the player and the monster are assigned 

arbitrary values for ℎ𝑒𝑎𝑙𝑡ℎ, attack 𝑎𝑡𝑘, and defense 𝑑𝑒𝑓 before their tournaments. The player attacks 

first, then receives damage from the monster. This is the end of a complete round. The one who loses 

all their health loses the game. The game engine contains a damage calculator (1) and a linear attribute 
generator (2). 

 d =   {
𝑙𝑜𝑔(1 + 𝑎𝑡𝑘 − 𝑑𝑒𝑓)(1 +  𝜖) 𝑖𝑓 𝑎𝑡𝑘 ≥  𝑑𝑒𝑓

0.1(1 +  𝜖), 𝑖𝑓 𝑎𝑡𝑘 ≤  𝑑𝑒𝑓 
, 𝜖~Ν(0, σ2) (1) 

 𝑎𝑡𝑘 =  
1

𝛼
 ℎ𝑒𝑎𝑙𝑡ℎ +  𝛾,   𝑑𝑒𝑓 =  

1

𝛼
 ℎ𝑒𝑎𝑙𝑡ℎ +  𝛾, 𝛾~Ν(0, 𝜏2) (2) 

In this damage calculator (1), results for tournaments with low attribute gaps between units are more 

uncertain, and the logarithm function here helps the model balance the difficulty. σ is a hyperparameter 

that determines the level of uncertainty for damage shift 𝜖. To avoid infinite battle rounds where neither 

two units can deal any damage to the other, a small but normally distributed damage of around 0.1 was 
introduced in the calculator. The linear attribute generator (2) assumes health grows linearly with the 

coefficient 
1

𝛼
 with the sum of 𝑎𝑡𝑘 and 𝑑𝑒𝑓 with a random but small attribute shift 𝛾, controlled by 

variance 𝜏2. This generator ensures that monsters are set at different difficulty levels and players are 

placed at various levels. 

The concept of this PvE engine is highly extensible. For instance, players could receive higher 
attributes after a victory. Another adaptation could involve setting a complex environment with agents 

or human players. This work focuses solely on the difficulty adjustment system for static attributes to 

select the most appropriate opponent for players based on their performance. 

2.2.  Algorithms 

A Multi-Armed Bandit problem is a classic framework in decision-making. The basic assumption is that 

a set of 𝑘 arms is repeatedly selected for 𝑛 times(horizons), where pulling arms does not affect the 
reward. The goal is to minimize the regret between the optimal and selected arm. 
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The idea of the algorithms is oriented towards balancing exploration and exploitation. In this game 

engine, four MAB algorithms were implemented: ϵ  – greedy, Upper Confidence Bound(UCB1), 

Asymptotically Optimal Upper Confidence Bound(AOUCB), and Thompson Sampling. All four 
algorithms are context-free bandits, so they directly estimate the reward based on average observed 

rewards. Exploitation is done by pulling the arm with the best-estimated reward at each timestamp 𝑡. 

The main difference lies in their strategy for exploration. 

𝜖 – greedy does exploration with probability 𝜖. With probability 1 - 𝜖, the algorithm picks arm 𝑎 =
argmax

1≤𝑖≤𝑘
𝑟𝑖̂, otherwise it explores other arms with uniform distribution. 

UCB1 is designed with interval estimation for rewards. The algorithm pick arm 𝑎 = argmax
1≤𝑖≤𝑘

𝑟𝑖̂  +

 √
log 1/δ

𝑁𝑖(𝑡)
, and 𝑁𝑖(𝑡) denotes that the times arm 𝑖 has been picked. δ =

1

𝑛2
 denotes the hyperparameter to 

control the confidence bound. It encourages exploration for arms selected fewer times and keeps 

confidence with more exploited arms.  

AOUCB eliminates the effect of horizons on the confidence bound by picking arm 𝑎 = argmax
1≤𝑖≤𝑘

𝑟𝑖̂  +

 √
2log 𝑡

𝑁𝑖(𝑡)
. This algorithm maintains exploration if horizon 𝑛 is extremely large. 

Thompson Sampling is based on Bayesian learning. It models the uncertainty of the reward for each 

arm by maintaining a probability distribution over possible reward values. In this approach, rewards for 

arms are initialized with a Beta distribution, updated as more data is gathered. At each timestamp 𝑡, the 

algorithm samples from these distributions and selects the arm with the largest sampled value. This 

process ensures that arms with higher uncertainty are sampled more, and arms with consistently high 
rewards are favored over time. 

All four MAB algorithms are context-free multi-armed bandits, meaning they measure the difficulty 

of the battle without any information about the attributes of players or monsters. The key point of the 

experiment is to compare their capability to follow predefined strategies that balance confidence in 
difficulty measurement with as few simulations of suboptimal tournaments (too easy or too hard for the 

player) as possible. This is evaluated by cumulative regret, as discussed in Section 2.3.2 Evaluation 

Metrics. 

2.3.  Experiment design 

• Player and monster generator 

This experiment generated 20 players of different levels by selecting health through a uniform 

distribution 𝑈(𝐿 = 100, 𝐻 = 200). After that, the linear attribute generator initialized their attributes 

with τ=0.2. Similarly, five difficulties(arms) were set by generating monsters with health values of 100, 

125, 150, 175, and 200, using the linear attribute generator with 𝜏=0.05 for more stable difficulty.  

At the same time, low-stat units should have chances to beat opponents with marginal attribute 

advantage, so the damage calculator was set with ϵ = 0.5 here. In the numerical balance test, a player 
from the linear attribute generator (linear coefficient=10) with 40 health has a more than 10% probability 

of beating another player initialized with 50 health. 

• Evaluation metrics 

To eliminate the effect of rounds 𝑟 growing linearly with ℎ𝑒𝑎𝑙𝑡ℎ, a normalized round formula (3) is 

defined using the health lower bound 𝐿: 

 𝑟𝐿  =  
𝑟 ×𝐿

ℎ𝑒𝑎𝑙𝑡ℎ
 (3) 

The goal of DDA systems is to adjust the difficulty for players. Two key factors are considered to 

construct the reward function (4): win or lose and the game's duration. The optimal case for players is 

winning the game with the maximum number of rounds. Decision boundary for round reward 𝑟2 also 
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comes from numerical engine testing, where a player with 100 health beats the opponent within 70 

rounds with a 40%+ stats advantage, 150 rounds with a 20%+ advantage, and 250 rounds with a 15%+ 

advantage. Beyond 250 rounds, the win rate exceeds 10%, so the result of the battle is no longer stable. 

 𝑟1 = {
1, 𝑤𝑖𝑛
0, 𝑙𝑜𝑠𝑒

, 𝑟2 = {

0,0<𝑟𝐿≤70 
1,70<𝑟𝐿≤150

2, 150 < 𝑟𝐿 ≤ 250

3, 𝑟𝐿 ≥ 250

, 𝑟 = 𝑟1 + 𝑟2 (4) 

Performance for multi-armed bandits is evaluated by cumulative regret (5), which represents the 

cumulative reward gap between the best arm 𝑟∗ and selected arm 𝑟𝑡. For all four algorithms tested, their 

cumulative regrets grow with a logarithm upper bound: 𝑂(𝑙𝑜𝑔(𝑚/𝑡)). The logarithm curve could be 

demonstrated using the average regret (6). Optimal reward 𝑟∗ was 4 for the environment, and the horizon 

was set to 10000. 

 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑟𝑒𝑡 = ∑ 𝑟∗ − 𝑟𝑡
𝑛
𝑡=0  (5) 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑔𝑟𝑒𝑡 =
1

𝑡
∑ 𝑟∗ − 𝑟𝑡

𝑛
𝑡=0  (6) 

The basic idea for this reward setting comes from Flow Theory, introduced by psychologist Mihaly 

Csikszentmihalyi [7-9]. The right balance between the challenges and the player’s skill level helps 
players fully immerse and focus in the game. Too much difficulty leads to frustration, while too little 

leads to boredom. In this reward setting, the game engine values winning or losing less than the number 

of rounds in the battle. 

3.  Experimental results and analysis 

 

Figure 1. Cumulative regret (Picture credit: Original). 
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Figure 2. Average regret (Picture credit: Original). 

From the cumulative regret plot Figure 1 for 20 players, all four regret curves increase linearly with the 

horizon. The standard variance, shown as the shaded area, is tightly bounded, indicating that Multi-

Armed Bandit algorithms are stable in repeated experiments. From the average regret plot in Figure 2, 
all MAB algorithms successfully converged to a low average regret of less than 0.82, indicating that the 

algorithms successfully found the best difficulty for each player. Players win the tournaments against 

monsters, and the duration of the battles is at least 150 rounds on average. This demonstrates the strong 

adaptability of Multi-Armed Bandits in DDA systems. 

In Figure 2, the convergence speed for average regret is fast for the Thompson Sampling and 𝜖 – 

greedy. DDA systems using these two algorithms found their best difficulty within 100 trials or fewer. 

In contrast, UCB and AOUCB kept exploring the suboptimal difficulty choice and soon realized the 
optimal arm within 2000 trials and did sufficient exploration on the best arm. This result indicates their 

strong robustness in this setting, and their exploration and exploitation balance strategy outweighs the 

other two algorithms, so they converge to a lower average regret in the long run. 

However, from the blue curve in Figure 2, the exploration strategy for 𝜖 – greedy is not as effective 
as other algorithms. A low probability of exploration and uniform distribution for selecting other arms 

led to a constantly moderate value at first but failed to find the best arm in the long run. After repeatedly 

picking the best arm, good exploitation causes the average regret to converge to its optimal value, but 
this strategy did not sufficiently explore other arms, including the best arm in these experiments. This is 

because a fixed rate of exploration and exploitation is not as effective as adaptive strategies. After all, 

both UCB and Thompson Sampling adjust their confidence intervals with increasing exploitation. 

Thompson Sampling is a widely used algorithm due to its computational efficiency [6]. However, in 
this PvE experiment, the red curve in Figure 2 indicates that the algorithm tends to have insufficient 

exploration, meaning the beta distribution for different difficulties is not optimal. One possible 

explanation is that the especially high average regret in the early rounds results from the indeterminate 
sampling strategy used to calculate the posterior distribution. This problem exists in the Thompson 

Sampling algorithm and other reward-based arm-picking policies like UCB. Further study should 

consider the warm-start strategy to make the algorithms more robust since the warm-up utilizes the 
historical data for the player’s performance with supervised learning [10, 11]. Rather than training from 

scratch, this method will stabilize the beta distribution for Thompson sampling, which is a more robust 

modification in repeated experiments.  
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4.  Conclusion 

This paper presented an effective application of Multi-Armed Bandits algorithms to Dynamic Difficulty 

Adjustment systems in Player versus Environment games. Through a game engine simulation, all MAB 
algorithms successfully find the most appropriate difficulty for players to win the battle with hundreds 

of rounds. UCB and AOUCB showed superior performance by efficiently selecting the optimal 

difficulty level within a limited number of trials. 𝜖 – greedy also converged to low average regret but 
showed an inflexible exploration strategy. No warm-up beta distribution versions of Thompson 

Sampling performed inconsistently for the regrets. The results of this study show the great potential of 

MAB algorithms in overcoming the limitations of traditional difficulty adjustment methods. By 

controlling exploration and exploitation through numerical boundary analysis, MAB can offer a highly 
explainable and computationally efficient solution for real-time difficulty adjustments in games, 

ensuring player engagement without sacrificing performance. Future work may apply this framework to 

more complex environments. The game engine could be extended with continuous settings, such as 
attribute rewards after battles, and build a specific combat engine like in most video games, including 

multiple player interactions and a skill-based evaluation system. Additionally, MAB algorithms still 

need improvement, such as incorporating contextual bandits or time-series methods to learn more 
historical information about players and implementing warm-up strategies to improve performance 

during the initial exploration phase, making MAB more robust. 
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