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Abstract. Super-resolution image reconstruction (SRIR) endeavors to restore high-resolution 

(HR) images with enhanced detail from corresponding low-resolution (LR) inputs. With the 

rapid development of deep learning, integrating deep learning methods provides new solutions 

for the super-resolution (SR) field. This paper first reviews the background and significance of 

SR, development process, and the technical value of applying deep learning to SR. Next, SR 

methods based on deep learning are categorized according to different network types, with a 

focus on analyzing and comparing the applications of Convolutional Neural Networks (CNNs), 

Residual Networks (ResNet), Generative Adversarial Networks (GANs), and Diffusion Models 

in SR. The paper also introduces key evaluation metrics and problem-solving strategies, followed 

by a performance comparison of mainstream methods on publicly available datasets. Finally, a 

summary of SR algorithms based on deep learning is provided, along with an outlook on future 

development trends in the field and explore the possible next research directions in the field of 

image super-resolution. 

Keywords: Image super-resolution, Deep learning, Convolutional neural networks, Generative 

adversarial networks. 

1.  Introduction 

Super-resolution (SR) seeks to generate high-resolution (HR) images from low-resolution (LR) 

observations[1]. A challenge of SR lies in its ill-posedness, meaning that a single LR image can 
correspond to more than one valid HR reconstructions. SR, extensively applied across various domains, 

finds significant use in fields like medical imaging [2] and remote sensing imaging [3]. 

Amid the swift advancements in deep learning, this technology has been extensively integrated into 
a wide range of artificial intelligence tasks, including image classification and object detection, leading 

to remarkable breakthroughs. Simultaneously, numerous deep learning approaches have been employed 

to address super-resolution challenges. Both early methodologies utilizing Convolutional Neural 
Networks (CNNs) and subsequent techniques grounded in Generative Adversarial Networks (GANs) 

have demonstrated exceptional performance. More recently, diffusion-based super-resolution has shown 

great potential in enhancing the resolution of LR images. Recently, the problem of artifacts in diffusion-

based super-resolution was confronted by Zheng et al. [4] through the introduction of innovative 
techniques known as Reality-Guided Refinement (RGR) and Self-Adaptive Guidance (SAG). Wang et 

al. [5] introduced a one-step bi-directional distillation approach, which is specifically designed to 
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elucidate the deterministic mapping between input noise and the resultant high-resolution image, along 

with the reverse process, by utilizing a teacher diffusion model in conjunction with their developed 

deterministic sampling method. 
This article presents an extensive review of the latest advancements in deep learning-based super-

resolution techniques. The SR methods based on deep learning are categorized according to the learning 

approaches and network types used. These categories include SR methods based on Convolutional 
Neural Networks (CNNs), Residual Networks (ResNet), Generative Adversarial Networks (GANs), and 

diffusion-based SR networks, each of which is introduced and discussed in detail. 

2.  Introduction to Deep Learning SR Method 

2.1.  CNN-based Super-Resolution Networks 

2.1.1.  Super-Resolution Convolutional Neural Network (SRCNN). The Super-Resolution Convolutional 

Neural Network (SRCNN) [6] is different from traditional interpolation and reconstruction algorithms. 

It employs a three-layer neural network to extract feature information from images, thereby enabling the 
learning of the mapping relationship between LR images and HR images in an end-to-end manner. 

Ultimately, the system, in a significant development, reconstructs the image while simultaneously 

simulating the traditional super-resolution process. As the pioneering deep learning-based image super-
resolution model, SRCNN significantly enhanced the performance of image resolution reconstruction 

at the time, notwithstanding its relatively simple architecture. 

2.1.2.  Fast Super-Resolution Convolutional Neural Network (FSRCNN). Fast Super-Resolution 

Convolutional Neural Network (FSRCNN) [7] is an improved version of SRCNN, designed to enhance 
both the computational speed and performance of image super-resolution. Compared to SRCNN, 

FSRCNN incorporates deconvolution layers at the final part of the network, utilizes a deeper network 

architecture, and employs smaller convolutional kernels. This design enables the model to effectively 
acquire the mapping from the original LR images to HR images, significantly increasing the restoration 

speed while maintaining the quality of the recovery. 

2.1.3.  Efficient Sub-Pixel Convolutional Neural Network (ESPCN). Unlike SRCNN, Efficient Sub-

Pixel Convolutional Neural Network (ESPCN) [8] does not compute directly at the HR level. At the 
heart of this network lies the incorporation of a sub-pixel convolutional layer structure, which is placed 

at the last layer of the network. This method regulates the quantity of feature maps through convolutional 

operations and integrates multiple feature maps by rearranging the pixels, achieving different upscaling 
effects, thereby improving both reconstruction efficiency and quality. 

2.1.4.  Residual Channel Attention Network (RCAN). The Residual Channel Attention Network (RCAN) 

[9] achieves significant advancements by introducing the Residual in Residual (RIR) structure, which 
constructs deep networks to enhance visual recognition performance. This approach allows the model 

to capture high-frequency information and combine it with low-frequency information to improve 

resolution. Additionally, RCAN also marks the inaugural introduction of the attention mechanism in LR 

image tasks, adjusting the allocation of resources to more information-rich areas through channel 
attention and improving the resolution improvement effect. 

2.1.5.  Holistic Attention Network (HAN). The Holistic Attention Network (HAN) enhances the 

generation of clearer and more detailed high-resolution images by introducing a holistic attention 
mechanism that captures both global and local information at multiple scales [10]. The Spatial Attention 

Mechanism focuses on the spatial relationships within the image, enhancing spatial features. The 

Channel Attention Mechanism, similar to RCAN, underscores the significance of features across various 
channels. 
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2.2.  ResNet-based SR Networks 

2.2.1.  Very Deep Convolutional Networks for Super-Resolution (VDSR). Very Deep Convolutional 

Networks for Super-Resolution (VDSR) utilizes an exceptionally deep convolutional network [11]. The 
increase in network depth leads to a significant enhancement in image clarity. VDSR is characterized 

by the use of 20 weight layers, which effectively capitalize on contextual information across extensive 

image areas. However, in extremely deep networks, the speed of convergence emerges as a critical issue 
during the training process. 

2.2.2.  Enhanced Deep Residual Networks (EDSR). Unlike typical generative network components, 

Enhanced Deep Residual Networks (EDSR) removes unnecessary batch normalization operations [12]. 

This allows EDSR to stack more network layers without more resources. Consequently, each layer of 
the network can extract more features to enlarge the model size and improve reconstruction quality. 

Additionally, this method integrates residual scaling by incorporating a constant scaling layer following 

the convolutional layers in each residual block, which serves to stabilize the training of large models. 

2.2.3.  Multi-Scale Residual Network (MSRN). The Multi-Scale Residual Network (MSRN) advances 

the residual block by incorporating convolutional kernels of diverse scales. This enhancement facilitates 

the adaptive detection of image features across varying scales [13]. The Multi-Scale Residual Blocks 
employs multi-scale feature fusion to capture image feature information at various scales, thereby 

significantly reducing computational complexity. The Hierarchical Feature Fusion Structure filters and 

fuses all feature outputs from above blocks, minimizing unnecessary redundant information while 

adaptively highlighting useful information. 

2.2.4.  Deep Back-Projection Networks (DBPN). Deep Back-Projection Networks (DBPN) 

progressively enhances image resolution through a multi-level forward and backward projection 

mechanism, thereby better recovering image details [14]. The core of DBPN involves using forward 
projection to map low-resolution features into high-resolution space, followed by backward projection 

to remap them back into low-resolution space. This iterative process helps reduce error accumulation 

and improves reconstruction accuracy. The multiple bidirectional projection operations enable DBPN 

to excel in detail recovery and edge reconstruction, particularly demonstrating outstanding performance 
in high-magnification tasks. 

2.2.5.  Cascading Residual Network (CARN). Cascading Residual Network (CARN) applies a 

progressive learning approach to cascading residual networks [15]. In the training method for extreme 
super-resolution scenarios, the model initially generates relatively low-resolution outputs and then 

incrementally increases the output resolution by adding additional networks to the model. This 

progressive upsampling of images helps to reduce abrupt size changes in the model, thereby alleviating 
training instability. 

2.3.  GAN-based SR Networks 

2.3.1.  Super-Resolution Generative Adversarial Network (SRGAN). Super-Resolution Generative 

Adversarial Network (SRGAN) introduces GANs into the image SR field, proposing a network model 
for image SR reconstruction that utilizes generative adversarial networks [16]. Through adversarial 

training between the generator and discriminator, the model generates high-resolution images from low-

resolution inputs. The generator aims to create visually realistic high-resolution images, while the 
discriminator evaluates the authenticity of these images. 

2.3.2.  Enhanced Super-Resolution Generative Adversarial Network (ESRGAN). Enhanced Super-

Resolution Generative Adversarial Network (ESRGAN) [17] builds upon the foundation of SRGAN 
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with several improvements. The paper introduces a network unit called the Residual-in-Residual Dense 

Block (RRDB), which eliminates the Batch Normalization layers. Additionally, the authors enhance the 

discriminator's objective in the GAN framework and utilize an activation-based feature composition for 
the perceptual loss function. These modifications contribute significantly to improving the visual quality 

of the output images. 

2.3.3.  Blind Super-Resolution Generative Adversarial Network (BSRGAN). Blind Super-Resolution 
Generative Adversarial Network (BSRGAN) employs random permutations of various degradation 

factors, including blurring, downsampling, and noise [18]. This approach enables the trained BSRGAN 

to exhibit significant performance improvements when handling real-world degraded images. 

2.4.  Diffusion-based SR Networks 

2.4.1.  Super-Resolution Diffusion Probabilistic Model (SRDiff). While learning-based SISR methods 

significantly outperform traditional techniques, approaches focusing on PSNR, GAN-driven methods, 

and flow-based methods each face issues such as over-smoothing or excessive model size. To address 
these challenges, the Super-Resolution Diffusion Probabilistic Model (SRDiff) is proposed [19]. This 

model is the first single-image super-resolution model based on diffusion processes, gradually 

transforming Gaussian noise into super-resolution images conditioned on low-resolution inputs through 
a Markov chain, while incorporating residual prediction to accelerate convergence.  

2.4.2.  Frequency Domain-guided Multiscale Diffusion Model (FDDiff). The Frequency Domain-guided 

Multiscale Diffusion Model (FDDiff) [20] decomposes the high-frequency information complementary 

process into more granular steps. FDDiff directs the backward diffusion process to supplement the 
missing high-frequency details over time steps. Furthermore, a multiscale frequency refinement network 

is designed, which is capable of processing information across multiple scales, allowing for more precise 

identification and prediction of high-frequency details in signals or images. 

2.4.3.  Implicit Diffusion Models for Continuous Super-Resolution (IDM). Implicit Diffusion Models for 

Continuous Super-Resolution (IDM) [21] integrates implicit neural representations with denoising 

diffusion models into a unified end-to-end framework. During the decoding process, implicit neural 

representations are utilized to learn continuous resolution representations. A scalable adjustment 
mechanism is designed, which includes a LR adjustment network and a scaling factor. 

3.  Discussion and Analysis 

3.1.  Evaluation Metrics 
Evaluation metrics typically employ established computational formulas to assess the errors between 

SR images and HR images, including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) . As the ratio of the maximum power of a signal to the power of noise in the signal, PSNR 
measures the quality of the compressed reconstructed image of the input. SSIM is a method which can 

quantify the similarity between two images. Higher values of PSNR and SSIM indicate better quality of 

the reconstructed images, reflecting superior performance of the SR methods. 

3.2.  Datasets 
The datasets used include Set5[22], Set14[23], B100[24], Urban100[25], and Manga109[26]. These 

datasets contain varying numbers of high-resolution images, ranging from 5 to 2,650, covering a wide 

range of content such as environments, flora and fauna, racing cars, natural landscapes, and people. They 
effectively and comprehensively test the performance of algorithms. Additionally, other related 

algorithms have been designed to improve the practical application value of SR in more realistic life 

scenarios by utilizing image datasets that better reflect real-world conditions for experimentation. 
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3.3.  Analysis of Experimental Results 

This study conducts a comparative analysis of the experimental results from traditional methods and 

deep learning approaches based on different network types, as reported in relevant literature. The public 
datasets used for the experiments include Set5[22], Set14[23], and BSD100[24]. The performance of 

several mainstream deep learning-based super-resolution methods is compared, including Bicubic 

interpolation [27], SRCNN[6], FSRCNN[7], VDSR[11], EDSR[12], RCAN[9], MSRN[13], HAN[10], 
and DBPN[14], with Bicubic serving as the benchmark method for comparison. Since the Set5, Set14, 

and BSD100 datasets only provide HR images, simulated LR images need to be generated from the 

high-resolution images beforehand. In this study, Bicubic interpolation is used to downsample each 

high-resolution image by factors of 2, 3, and 4, resulting in the corresponding low-resolution images. 
Subsequently, experiments on super-resolution using various deep learning-based models are conducted 

on the LR images for 2x, 3x, and 4x upscaling, with the results presented in Tables 1-3. 

Table 1. Quantitative comparison with SR methods at ×2 scale 

Method 
Set5 Set14 BSD100 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic[27] 33.66 0.929 9 30.24 0.868 8 29.56 0.843 1 

SRCNN[6] 36.66 0.954 2 32.45 0.906 7 31.36 0.887 9 
FSRCNN[7] 37.05  0.956 0 32.66 0.909 0 31.53 0.892 0 

VDSR[11] 37.53 0.958 7 33.05 0.912 7 31.90 0.896 0 

EDSR[12] 38.11 0.960 2 33.92 0.919 5 32.32 0.901 3 

RCAN[9] 38.27 0.961 4 34.12 0.921 6 32.41 0.902 7 
MSRN[13] 38.08 0.960 5 33.74 0.917 0 32.23 0.900 2 

HAN[10] 38.27 0.961 4 34.16 0.921 7 32.41 0.902 7 

DBPN[14] 38.09 0.960 33.85 0.919 32.27 0.900 

Table 2. Quantitative comparison with SR methods at ×3 scale 

Method 
Set5 Set14 BSD100 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic[27] 30.39 0.868 2 27.55 0.774 2 27.21 0.738 5 
SRCNN[6] 32.75 0.909 0 29.30 0.821 5 28.41 0.786 3 

FSRCNN[7] 33.18 0.914 0 29.37 0.824 0 28.53 0.791 0 

VDSR[11] 33.66 0.921 3 29.78 0.831 8 28.83 0.797 6 

EDSR[12] 34.65 0.928 0 30.52 0.846 2 29.25 0.809 3 
MSRN[13] 34.38 0.926 2 30.34 0.839 5 29.08 0.804 1 

HAN[10] 34.75 0.929 9 30.67 0.848 3 29.32 0.811 0 

Table 3. Quantitative comparison with SR methods at ×4 scale 

Method 
Set5 Set14 BSD100 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic[27] 28.42 0.810 4 26.00 0.702 7 25.96 0.667 5 

SRCNN[6] 30.48 0.862 8 27.50 0.751 3 26.90 0.710 1 

FSRCNN[7] 30.72 0.866 0 27.61 0.755 0 26.98 0.715 0 
VDSR[11] 31.35 0.883 8 28.02 0.767 8 27.29 0.725 2 

SRGAN[16] 32.05 0.891 0 28.53 0.780 4 27.57 0.735 4 

EDSR[12] 32.46 0.896 8 28.80 0.787 6 27.71 0.742 0 
MSRN[13] 32.07 0.890 3 28.60 0.775 1 27.52 0.727 3 

HAN[10] 32.64 0.900 2 28.90 0.789 0 27.80 0.744 2 

DBPN[14] 32.47 0.898 28.82 0.786 27.72 0.740 
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Deep learning-based methods consistently outperform the traditional Bicubic method across all 

metrics at ×2, ×3 and ×4 scales, and this advantage becomes more pronounced as the scaling factor 

increases. While SRCNN, as one of the earliest deep learning SR methods, demonstrated excellent 
performance at its inception, its efficacy has gradually been surpassed by newer methods in recent years. 

Across all scales and datasets, the HAN method performs well in terms of PSNR, and in most cases, 

its SSIM values also rank among the top. This indicates that HAN possesses strong capabilities in image 
super-resolution tasks. Simpler models like SRCNN and FSRCNN, while advantageous in 

computational efficiency, perform worse than more complex deep learning models when handling high-

resolution images and intricate scenes. At higher scaling factors, the MDSR method excels in SSIM, 

particularly on the Set5 dataset. The introduction of attention mechanisms in both the RCAN and HAN 
methods generally results in outstanding performance across all datasets and scaling factors, suggesting 

that attention mechanisms can effectively enhance model performance. 

As the scale increases, the difficulty of image reconstruction rises. Taking a scaling factor of 4 as an 
example, the PSNR and SSIM values of nearly all algorithms show a significant decline. This indicates 

that the scaling factor has a substantial impact on the effectiveness of super-resolution reconstruction. 

The PSNR and SSIM values for SRCNN and FSRCNN decrease relatively gradually with increasing 
scaling factors, whereas more complex models like VDSR, EDSR, and RCAN are better at preserving 

image quality, particularly performing exceptionally well at factors of 3 and 4. 

4.  Conclusion 

As a fundamental task in computer vision, image SR reconstruction plays a crucial role in practical 
applications such as criminal investigation, medical diagnosis, and smart cities. This paper reviewed 

recent deep learning-based image SR methods and compared the performance of mainstream approaches 

based on two metrics: PSNR and SSIM. Although SR technology has achieved substantial research 
progress, several challenges remain in the following areas: 

(1) Model Lightweight Design. As the depth and complexity of models increase, so does their 

computational load. Designing lightweight network architectures that maintain high-quality high-

resolution images while reducing computational demands is an important direction in current research. 
(2) Generalization Ability. Most current SR models perform exceptionally well in specific scenarios 

but struggle to adapt to diverse and complex environments. Therefore, further research is needed on how 

to maintain strong generalization capabilities across different contexts. 
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