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Abstract. With the rapid growth of the internet, the security threats to computer networks have 

escalated significantly, making the reduction and prevention of cybercrime a top priority in the 

digital age. Traditional Network Intrusion Detection Systems (NIDS) struggle with limitations 

in detection accuracy and real-time performance as attackers employ increasingly sophisticated 

techniques. In recent years, deep learning has emerged as a prominent solution in the NIDS field 

due to its powerful capabilities in feature extraction and classification. This paper reviews the 

application of deep learning in NIDS, with a focus on Convolutional Neural Networks (CNN), 

Long Short-Term Memory Networks (LSTM), and their hybrid models. The paper discusses the 

strengths of these models in capturing spatial and temporal features and examines their 

performance on key datasets such as KDD Cup 99 and UNSW-NB15. Additionally, the paper 

addresses challenges related to computational complexity, real-time performance, and model 

interpretability, while suggesting future research directions, including model optimization, 

lightweight architectures, and improved interpretability. Finally, the potential of Automated 

Machine Learning (AutoML) in advancing NIDS design and enhancing response capabilities is 

explored. This study offers valuable insights for further research and development in NIDS. 

Keywords: Deep Learning, Intrusion Detection, Convolutional Neural Networks, Long Short-

Term Memory Networks, Automated Machine Learning. 

1.  Introduction 

Traditional Intrusion Detection Systems (IDS) play a critical role in network security and are generally 

categorized into signature-based IDS and anomaly-based IDS. However, with the increasing complexity 

and diversity of network attacks, traditional IDS reveals significant shortcomings in handling complex 

features and temporal data. 

Firstly, traditional IDS mainly rely on predefined rules or signatures to detect intrusions, which 

prevents them from identifying new attack patterns. Moreover, to improve detection accuracy, manual 

feature extraction and selection are required, a process that is time-consuming and labor-intensive, often 

leading to the omission of potentially crucial features. Additionally, modern network traffic contains 

numerous complex and high-dimensional features, such as the combination of multiple protocols and 

encrypted traffic. Traditional IDS struggle with high-dimensional data, making it difficult to capture 

critical intrusion features. 

Secondly, many network attacks manifest as a series of time-related behaviors or events, such as 

gradual infiltration or persistent attacks. However, traditional IDS typically rely on single, static events 

for detection, neglecting temporal correlations. This static analysis method often fails to detect 
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distributed denial-of-service (DDoS) attacks or advanced persistent threats (APT), which involve time-

dependent behaviors. For example, multiple suspicious connections from a single IP address may be 

indicative of an attack, but traditional IDS lack effective mechanisms to process such temporal data, 

rendering them incapable of detecting attacks with long latency periods. 

Real-time performance is another issue. When faced with complex temporal data requiring fast 

responses, traditional IDS cannot keep up, failing to provide timely protection. This limitation is 

especially critical when addressing rapidly evolving attacks or zero-day threats. 

Consequently, more researchers are exploring how advanced models, such as CNN and LSTM, can 

be integrated with deep learning technologies to overcome these deficiencies and enhance the overall 

performance of intrusion detection systems. Formatting the title, authors and affiliations 

Please follow these instructions as carefully as possible so all articles within a conference have the 

same style to the title page. This paragraph follows a section title so it should not be indented. 

Paper [1] proposed a deep learning-based intrusion detection system (DL-IDS) that combines CNN 

and LSTM to extract both spatial and temporal features of network traffic data. The model was tested 

on the CICIDS2017 dataset, achieving an accuracy of 98.67% and providing robust detection across 

various attack types, outperforming other machine learning models. Paper [2] proposed a hybrid deep 

neural network for intrusion detection, combining CNN to extract spatial features and LSTM to capture 

temporal dependencies in network traffic. Their model was evaluated using the CIC-IDS2017, UNSW-

NB15, and WSN-DS datasets, demonstrating improved accuracy and detection rates, while effectively 

reducing false alarm rates compared to other machine learning and deep learning models. 

This paper explores a deep learning-based network intrusion detection system that combines the 

strengths of CNN and LSTM networks to extract spatiotemporal features from network traffic. First, the 

paper describes the research background and existing methods in the related field, followed by a detailed 

introduction to the architecture of the proposed hybrid model and its implementation process. Through 

empirical analysis, the paper validates the model's effectiveness across multiple datasets, demonstrating 

significant improvements in detection rate and accuracy, while also effectively reducing the false alarm 

rate. Overall, the CNN and LSTM-based intrusion detection system show great potential in practical 

applications by simultaneously processing spatial and temporal features. 

2.  Overview of Related Technologies 

2.1.  Convolutional Neural Network (CNN) 

Deep learning is an artificial intelligence technology based on neural networks, offering stronger feature 

learning and data prediction capabilities compared to traditional machine learning methods. Deep 

learning often employs multi-layered complex neural networks for feature learning. Within the network 

structure, each layer extracts features from the input data and transforms its dimensions, enabling the 

identification of data representations in higher dimensions, which facilitates precise classification or 

prediction of the data. Among the various neural network architectures, CNN is one of the most 

commonly used structures. The core of Convolutional Neural Networks lies in its convolutional layers 

and pooling layers. The convolutional layers apply several convolutional kernels to the input data, 

transforming it into a higher-dimensional representation to identify its features. The pooling layers, 

through pooling techniques, reduce the spatial dimensions of the feature maps. 

As a classical deep learning model, CNN has been widely applied in various fields due to its excellent 

performance in image processing. In Network Intrusion Detection Systems (NIDS), the main role of 

CNN is to extract key spatial features from network traffic data. According to the literature [1], CNN is 

used in deep learning models to extract spatial features from network traffic data, including protocol 

distribution and statistical features of source and destination IP addresses. By leveraging CNN, 

researchers can better analyze patterns within network traffic, thereby improving the accuracy of 

intrusion detection. These features are particularly effective in detecting specific types of attacks, 

especially those with distinct patterns or structures. 
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Figure 1. Convolutional Neural Network Architecture [3] 

2.2.  Long Short-Term Memory Network (LSTM) 

LSTM is a deep learning model specifically designed for processing time-series data. Through its unique 

memory cells and gating mechanisms, LSTM can capture long-term dependencies within input data, 

which is particularly important in the temporal analysis of network traffic. The core concept of LSTM 

lies in its ability to store and translate input data over time through its memory cells. These memory 

cells are processed via gating mechanisms, represented by activation functions. By adjusting the weights 

and values of the activation functions, LSTM networks effectively generate temporal features between 

input and output data. In network intrusion detection, LSTM is primarily used to handle gradually 

evolving attacks, [2] such as Advanced Persistent Threats (APT). These types of attacks often consist 

of multiple stages, and LSTM can improve detection accuracy by analyzing time-series data to identify 

the correlations between these stages. 

 

Figure 2. Long Short-Term Memory Architecture [3] 

2.3.  Advantages of the CNN-LSTM Combined Model 

Table 1. Performance comparison of CNN-LSTM and traditional Deep Learning Models on KDD Cup 

99 datasets 

Datasets Model Accuracy(%) Detection Rate (DR, %) False Positive Rate (FPR, %) 

KDD Cup 99 CNN-LSTM 99.70 99.60 / 

KDD Cup 99 LSTM-RNN 96.93 98.88 10.04 

KDD Cup 99 GA-ELM 98.90 99.16 1.36 

KDD Cup 99 AE-CNN 93.99 77.94 6.82 

a Detection Rate (DR) represents the percentage of true positives among all actual positives. 

b False Positive Rate (FPR) represents the percentage of false positives among all actual negatives. 

 

A glance at the graph provided reveals a comparison of the accuracy, detection rate (DR), and false 

positive rate (FPR) across different models.[4] It is evident that the proposed CNN-LSTM model 

demonstrates a significant advantage over traditional deep learning models on the KDD Cup 99 Datasets, 

achieving an accuracy of 99.70% and a detection rate of 99.60%, with a notably low false positive rate  
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Figure 3. Comparison of model accuracy for intrusion detection systems on CICIDS2017 datasets 

The accuracy of the MultinomialNB model is the lowest (approximately 72%), indicating that it 

performs poorly in handling network intrusion detection problems. The accuracy of the Random Forest, 

J48, and Logistic Regression models is roughly similar, ranging between 96% and 98%, suggesting that 

these traditional machine learning methods are somewhat effective in handling intrusion detection, but 

still fall short compared to deep learning models. The CNN and LSTM models outperform traditional 

machine learning models, with accuracies between 96% and 98.5%. This demonstrates their superior 

ability to capture complex network traffic features. The CNN-LSTM (DL-IDS) model achieves the 

highest accuracy, close to 99%, indicating that the combination of CNN and LSTM provides the best 

detection performance by more comprehensively extracting spatial and temporal features, further 

improving detection accuracy. The CNN-LSTM model (DL-IDS) demonstrates the highest accuracy in 

detecting network intrusions, proving the advantage of this combined model in capturing complex 

patterns and temporal sequences, making it more reliable for practical network security applications.[5] 

 

Figure 4. Cross-Layer Feature Fusion CNN-LSTM Intrusion Detection Model [3] 
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The success of this combined model lies in its ability to capture the multidimensional information in 

network traffic. CNN can identify complex patterns within data packets, while LSTM is able to track 

the evolution of these patterns over time. By combining these two capabilities, the model can more 

accurately detect abnormal behavior in the network and respond to potential threats in a timely manner. 

3.  Problems and Solutions 

3.1.  Computational Complexity 

The computational complexity of the combined CNN and LSTM model is primarily reflected in the 

multi-layer convolution operations and the analysis of time series. CNN processes large amounts of 

high-dimensional data, while LSTM captures dependencies between sequences through complex time-

step processing. Although this combination improves the model's detection accuracy, it significantly 

increases the demand for computational resources, impacting the real-time performance of network 

intrusion detection systems. To reduce computational complexity while maintaining high detection 

accuracy, the following optimization methods can be considered: 

3.1.1.  Model Compression. Model compression techniques can effectively reduce the computational 

requirements and storage space of deep learning models. Common model compression methods include: 

• Pruning: Pruning techniques reduce the size of the model by removing unimportant connections or 

neurons. For the CNN-LSTM model, convolutional kernels and LSTM units that do not significantly 

impact performance can be pruned, reducing computational load and storage requirements. [6] 

Studies show that pruned models can greatly decrease computational demands while maintaining 

performance. 

• Quantization: Quantization reduces the precision of model weights and activation values from high 

precision (e.g., 32-bit floating-point) to lower precision (e.g., 8-bit integers), thereby lowering 

computational requirements and memory usage. Quantized models not only achieve faster inference 

speeds but also require fewer computational resources, making them suitable for embedded systems 

or edge devices. 

• Knowledge Distillation: Knowledge distillation involves training a smaller "student" model to 

mimic the behavior of a larger "teacher" model, reducing computational complexity while 

maintaining model performance. The CNN-LSTM combined model can be distilled into a more 

lightweight version, making it more suitable for real-time detection tasks.  

3.1.2.  Parallel Computing. Parallel computing techniques can accelerate the training and inference 

processes of deep learning models by distributing computational tasks across multiple processing units 

simultaneously. For the CNN-LSTM combined model, the following parallel computing strategies can 

significantly enhance real-time performance: 

• Data Parallelism: Data parallelism is one of the most commonly used parallel computing methods, 

and it is suitable for the CNN-LSTM combined model. Data parallelism works by splitting the input 

data into multiple subsets, processing them in parallel on multiple processing units, and then 

aggregating the results. This approach effectively reduces the computational load on each processing 

unit and accelerates the overall model's processing speed. 

• Model Parallelism: Model parallelism is applicable when the model is too large to fit on a single 

device. For the CNN-LSTM combined model, the CNN and LSTM components can be assigned to 

different computing units and run in parallel, reducing the burden on individual processing units and 

increasing the overall inference speed. 

• Distributed Computing: In a distributed computing environment, the computational tasks of the 

model are executed in parallel across multiple servers or computing nodes. This method is suitable 

for real-time analysis of large-scale network traffic, significantly improving the processing speed of 

the CNN-LSTM combined model and reducing latency. 
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By leveraging model compression and parallel computing techniques, the computational complexity 

of the CNN-LSTM combined model can be effectively mitigated, thus improving the real-time 

performance of NIDS. These optimization methods not only reduce the model's computational resource 

requirements while maintaining high detection accuracy but also meet the strict real-time demands of 

practical applications. These improvements are crucial for promoting the widespread use of CNN-LSTM 

models in network intrusion detection. 

3.2.  Data Dependency 

In the development of NIDS, the CNN-LSTM hybrid model heavily relies on large-scale, high-quality 

datasets that need to cover diverse attack types and sufficient normal traffic. However, obtaining such 

datasets is challenging due to issues like data imbalance, privacy concerns, and resource limitations. To 

effectively address the issue of data dependency, researchers have actively explored and implemented 

several strategies, with data augmentation and transfer learning standing out as prominent approaches. 

3.2.1.  Strategy 1: Data Augmentation. Data augmentation techniques increase the diversity and quantity 

of training data by applying various transformations to existing data, generating new samples. Common 

data augmentation methods include: 

• Data Noise Injection: By adding noise to network traffic (e.g., altering packet sequences, 

introducing random delays), this simulates the random disturbances in real networks. This helps 

models learn more robust features and reduces overfitting to specific patterns. 

• Data Slicing and Stitching: Existing data is sliced into smaller fragments and then randomly stitched 

together to generate new traffic sequences. This method increases data diversity, especially when 

dealing with temporal data, effectively enhancing the model's ability to learn time dependencies. 

• GANs (Generative Adversarial Networks): GANs generate new network traffic samples, including 

both normal and attack traffic. GANs can produce high-quality, diverse samples, alleviating the issue 

of data scarcity. Studies have shown that using GAN-generated samples can significantly improve 

model performance in scenarios with limited data. [7] 

3.2.2.  Strategy 2: Transfer Learning. Transfer learning reduces the dependence on large amounts of 

labeled data by transferring knowledge learned by a pre-trained model on large-scale datasets to the 

target task. For network intrusion detection, common transfer learning methods include: 

• Feature Transfer: Applying feature extractors learned from general datasets (such as ImageNet) to 

network traffic data and fine-tuning them with network-specific features. This method can greatly 

reduce training time and improve the model's performance on smaller datasets. 

• Domain Adaptation: Transfer learning is applied between different network environments or traffic 

patterns by adapting the distribution differences between domains. This allows the model to maintain 

efficient detection capabilities in new environments. [5] demonstrates how domain adaptation can be 

used to transfer a model from one network environment to another, thereby improving the model’s 

generalization. 

3.3.  Model Design Complexity 

Using deep learning models, particularly hybrid models that combine CNN and LSTM, can indeed 

improve detection accuracy and response speed. However, the architecture design of such combined 

models is often highly complex, requiring consideration of various factors such as the number of layers, 

the number of neurons per layer, and the choice of activation functions. This complexity not only 

increases the difficulty of model design but can also limit the model's generalization ability, as different 

datasets and application scenarios often require different model architectures. To address this 

complexity, Automated Model Design (AutoML) has emerged as a viable solution. 
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3.3.1.  Complexity of Hybrid Model Architecture. The CNN-LSTM hybrid model aims to fully leverage 

the strengths of Convolutional Neural Networks (CNN) in feature extraction and Long Short-Term 

Memory (LSTM) networks in sequence modeling. However, this innovative design introduces 

significant architectural complexity. Precisely configuring the number of convolutional layers in CNN, 

the size of the convolutional kernels, and the number of units in LSTM layers requires close alignment 

with the specific dataset characteristics and task requirements. Any improper configuration can lead to 

overfitting or underfitting, thus affecting the stability and accuracy of detection performance. Moreover, 

hyperparameter tuning during the model training process, such as learning rate, regularization 

coefficient, and batch size, can have a profound impact on the final training outcome. Fine-tuning these 

parameters often requires extensive experimentation and time investment. Additionally, given the 

diversity of network attack types and the complex, ever-changing data scenarios, targeted model 

optimization strategies become crucial. For example, high-dimensional network traffic data may require 

deeper CNN structures to enhance feature capture, while long sequence attack patterns might necessitate 

more complex LSTM layers to improve sequence modeling and prediction capabilities. 

3.3.2.  Feasibility of AutoML. AutoML aims to optimize model architecture and parameters through 

automation, reducing the time and effort involved in manual tuning. To improve the performance of 

Network Intrusion Detection Systems (NIDS), researchers have proposed the feasibility of using 

AutoML for model optimization. [8] noted that using semi-dynamic hyperparameter optimization 

methods can significantly enhance the performance of various models, including the automatic selection 

of optimization algorithms, learning rates, and batch sizes. These automated techniques have led to 

significant improvements in model accuracy on the UNSW-NB15 dataset. In NIDS model design, 

AutoML provides the following feasibility and advantages: 

• NAS (Neural Architecture Search): NAS in AutoML can automatically search for the optimal 

neural network architecture. By evaluating the performance of numerous potential network structures 

(e.g., accuracy, recall), NAS identifies the best model architecture. For the CNN-LSTM hybrid model, 

NAS can automatically explore the optimal configuration of layers to suit different datasets and tasks. 

• Hyperparameter Optimization: AutoML can automatically tune a model's hyperparameters, using 

techniques like random search and Bayesian optimization to find the best parameter combinations, 

thus improving training efficiency and detection performance. This process eliminates the tedious 

task of manual tuning and may even uncover the best parameter configurations that human designers 

could easily overlook. 

• Rapid Iteration and Deployment: AutoML tools typically support fast model iteration and 

deployment. For practical NIDS applications, AutoML can quickly generate and test multiple models, 

swiftly selecting the most suitable architecture for the current environment and data. Furthermore, as 

new data becomes available, AutoML can automatically adjust the model to maintain optimal 

performance. 
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3.4.  Case Analysis 

 

Figure 5. Performance of AutoML methods in NIDS 

The researchers optimized the CNN-LSTM model by adjusting the learning rate, batch size, and 

regularization parameters. The study demonstrated that the optimized model performed exceptionally 

well on the CIC-IDS2017 and UNSW-NB15 datasets, with accuracy improving to 99.64% and 94.53%, 

respectively, while also reducing training time. 

AutoML has demonstrated great potential in the design and optimization of NIDS models. By 

leveraging NAS technology and automated hyperparameter optimization, researchers can generate 

superior model architectures, significantly reduce training time, and enhance the adaptability and 

performance of models across different datasets and scenarios. As AutoML technology continues to 

evolve, the design of NIDS models will become more efficient and intelligent. 

4.  Proposed Future Research Directions 

4.1.  Innovative Network Architecture Design 

First, the attention mechanism, which has demonstrated outstanding performance in tasks such as natural 

language processing and image recognition, can be applied to NIDS in the future. This would allow the 

model to automatically focus on key features in network traffic, particularly for extracting features 

related to abnormal patterns or specific attacks, thereby improving the model's accuracy and recall. 

Second, residual connections can facilitate the training of deeper neural networks by addressing the 

vanishing gradient problem, enhancing the NIDS's ability to handle high-dimensional and complex data. 

Additionally, multi-task learning enables the model to simultaneously detect various types of attacks 

and identify normal traffic. By sharing representations between tasks, this approach improves the 

model's generalization ability and reduces the risk of overfitting. Finally, hybrid architectures combining 

CNN, LSTM, and other deep learning models (such as GANs and VAEs) can strengthen the NIDS’s 

ability to handle diverse network attacks, improving detection accuracy and robustness. These 

innovative architectures offer new approaches for the development of NIDS, addressing the ever-

evolving demands of network security [9]. 
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4.2.  Real-Time Optimization 

To improve the real-time performance of NIDS, model lightweighting is an important direction. 

Quantization techniques [10], which convert floating-point parameters into low-precision integers, 

significantly reduce computational complexity, making it suitable for deployment on resource-limited 

devices. Model pruning further reduces the model size by removing redundant neurons and connections, 

enhancing computational efficiency. By combining these two methods, NIDS can maintain high 

detection accuracy while improving response speed when processing high-frequency data streams. The 

application of efficient algorithms, such as knowledge distillation, allows a smaller "student" model to 

learn from a larger "teacher" model’s behavior, greatly reducing the model size and computational 

demands while preserving detection accuracy. Additionally, parallel computing techniques decompose 

complex computational tasks and process them simultaneously [11], drastically shortening model 

inference time, making it particularly useful for handling large-scale network traffic [12]. 

5.  Conclusion 

This review thoroughly explores the widespread application and recent advancements of deep learning 

technology in NIDS, with a particular emphasis on the superior performance of CNN and LSTM in 

extracting complex features from network traffic. By analyzing the experimental results of hybrid 

models such as CNN-LSTM, this paper highlights the significant role of deep learning in improving 

NIDS detection accuracy and real-time responsiveness, as well as demonstrating its vast potential in 

defending against modern network attacks. 

Looking ahead, NIDS research will focus on several cutting-edge areas. First, innovative network 

architecture design will further enhance model detection capabilities, such as integrating attention 

mechanisms to strengthen the capture of key features or utilizing residual connections to mitigate the 

vanishing gradient problem in deep networks, thereby improving generalization. Second, continued 

research into model lightweight and efficient algorithms will provide more efficient and real-time 

network intrusion detection in resource-constrained environments, ensuring stable NIDS operation in 

various complex scenarios. 

At the same time, the development of Automated Machine Learning (AutoML) will drive the 

intelligent progression of NIDS. AutoML not only simplifies the model design and optimization process 

but, when combined with reinforcement learning, could enable NIDS to adapt dynamically to changing 

network environments, enhancing its ability to respond to emerging network threats. As technology 

continues to evolve and innovate, deep learning-driven NIDS will play an increasingly intelligent and 

automated role in network security, providing a solid foundation for building a secure and reliable 

cyberspace. 
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