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Abstract: Multi-modality high-resolution MRI is beneficial for studying the brain structure 
and function in research and clinical settings. However, its acquisition is time-consuming, 
which reduces its feasibility for wider adoption especially for certain populations who cannot 
tolerate long scans. In this study, we propose a convolution neural network to obtain high-
resolution T1-weighted MRI from lower-resolution T2-weighted input that can be acquired 
within a shorter scan time. By leveraging Monte Carlo dropout, our model not only produces 
high-fidelity anatomical T1-weighted image with higher accuracy compared to baseline 
model, but also generates uncertainty estimation similar to the actual error map. Our method 
is validated on the Human Connectome Project, and the experiments indicate our method has 
the potential to improve the robustness and reliability of deep learning image synthesis and 
accurately accelerate multi-modality MRI to benefit research and clinical practice. 

Keywords: Deep Learning, Multi-contrast MRI, Convolutional Neural Network Image 
Synthesis, Monte Carlo Dropout. 

1. Introduction 

Magnetic resonance imaging (MRI) is a non-ionizing medical imaging technology that can be used 
to non-invasively probe brain structure and functional connectivity. Multi-contrast MRI can bring 
complementary information regarding brain structure; for example, T1-weighted images can provide 
superior grey-white contrast which would be beneficial for brain region segmentations and cortical 
surface reconstruction [1], and T2-weighted MRI is useful for clinical practice by suggesting water-
related abnormality such as multiple sclerosis [2].  

However, acquiring high-quality multi-contrast MRI is time-consuming, which reduces its 
feasibility in clinical practice. Separate acquisitions of T1, T2-weighted images of ~1 mm isotropic 
resolution take ~16 minutes, which is impractical especially for subjects intolerant to long scans such 
as children, the elderly, or other patients who cannot stay still. Especially, the time collection cost of 
T1 is typically longer than T2 [3], which is mainly reflected in these three aspects: Relaxation Time 
difference, whether Repetition Time (TR) is required, and data acquisition strategy. T1-weighted 
imaging relies on longitudinal relaxation time (T1), requires a longer TR (repetition time) to ensure 
that the signal is mainly contributed by T1 relaxation time, and generally requires more average 
sampling. In many situations, we have low-resolution T1 but high-resolution T2. 
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Existing SR(Super-Resolution) methods can be classified into deep-learning-based and non-deep 
learning based. Although current fast imaging acquisition (e.g., blipped-CAIPI [4], Wave-CAIPI [5]) 
and reconstruction (e.g., compressed sensing [6]) methods can accelerate the scan, these accelerated 
acquisitions might suffer from amplified noises and/or artifacts which might confound downstream 
image analysis and diagnosis. Deep learning-based becomes more popular in recent years because its 
ability to extract fine-grained MRI features. CNNs have demonstrated superior performance in 
transferring medical images between different modalities. For example, Emami et al. leveraged CNNs 
to generate CT scans from MRI [7]. Efforts have also been made to obtain MRI from PET [8]. The 
efficacy of using CNNs to transfer MRI between different contrasts has also been shown. Studies 
have successfully generated T2-weighted MRI from T1-weighted MRI and T1-weighted MRI from 
T2-weighted MRI [9-11].  

Moreover, due to the “black-box” nature of deep learning-based methods, the interpretability of 
decent image synthesis performance in these studies remains limited. The uncertainty of the deep 
learning models may risk producing hallucinations when generating images, which could confound 
downstream diagnosis and analysis [12]. There have been growing interests in identifying and 
avoiding such hallucinations. Uncertainty quantifications represent a promising avenue to reveal the 
reliability and improve the robustness of deep learning-based methods. For example, Tanno et al. [13] 
modelled the uncertainty in terms of intrinsic and parameter uncertainty.  Intrinsic uncertainty reflects 
the inherent ambiguity linked to the ill-posed nature of the image translation problem, quantified 
through the variance of the target conditional distribution estimated from a separate network. 
Parameter uncertainty accounts for ambiguity in selecting model parameters, reduced using 
variational dropouts. This approach captures various settings of network parameters for the given 
training data, providing a more robust result and an uncertainty estimation represented by the standard 
deviation. The efficacy of dropout layers for estimating uncertainty and improving robustness has 
been demonstrated in various applications, such as MRI reconstruction [15] and quantitative MRI 
[15]. 

In this study, we aim to leverage deep learning to obtain high-quality multi-contrast MRI without 
extending the scan time. Specifically, we propose an uncertainty-aware convolutional neural network 
(CNN) which synthesises high-quality anatomical MRI with uncertainty estimation. The uncertainty 
is quantified using Monte Carlo dropout [16] which introduces variances in different inferences that 
reflect uncertainty. The results from multiple inferences can be averaged to reduce the variance and 
improve the performance. Our model is validated on large-scale in-vivo data and shows promises 
accelerating the 15-minute scan of T1-weighted and T2-weighted images to less than 1 minute, with 
uncertainty estimation supporting its reliability and robustness for wider adoption to benefit clinical 
and neuroscientific research.   

The contributions of this study are as follows: 
1. We propose a deep convolutional neural network architecture for a multi-contrast MRI model. 
2. We design a Monte Carlo dropout-based approach to enable the proposed super-resolution (SR) 

model to be uncertainty-aware. 
3. We conduct extensive experiments on an MRI dataset from the Human Connectome Project to 

empirically demonstrate the effectiveness of our proposed method. 

2. Related Work 

Image super-resolution is an important task in various fields, including medical imaging and natural 
image processing. In recent years, deep learning has emerged as a powerful technique for tackling 
super-resolution problems.  
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For medical image super-resolution, one of the pioneering works is the application of the SRCNN 
model to MRI super-resolution by Dong et al. [17]. The authors demonstrated that the shallow 
SRCNN network can effectively enhance the resolution of MRI scans. Building upon this, Chen et 
al. proposed a 3D-SRCNN approach for CT image super-resolution, leveraging the 3D convolutional 
structure to better capture the volumetric information [18].  

In the natural image domain, the SRCNN model proposed by Dong et al. [19] was one of the first 
deep learning-based techniques for single image super-resolution. This work demonstrated the 
effectiveness of deep convolutional neural networks in learning an end-to-end mapping for upscaling 
low-resolution images. Extending this, Kim et al. introduced the VDSR model, which utilizes a very 
deep (20-layer) convolutional network to achieve state-of-the-art performance on natural image 
super-resolution benchmarks [20]. Furthermore, Shi et al. proposed the ESPCN model, which 
employs an efficient sub-pixel convolution layer to enable real-time single image and video super-
resolution [21]. 

These works illustrate the significant progress made in deep learning-based image super-resolution, 
encompassing both medical and natural image domains. The advancements in network architectures, 
training strategies, and computational efficiency have led to substantial improvements in super-
resolution quality and applicability. As the field continues to evolve, further research in this area is 
expected to bring even more powerful and practical solutions for various image enhancement tasks. 

Moreover, Generative adversarial networks (GANs) have been a popular choice for the contrast 
transfer tasks [7-9,11]. The adversarial loss in GAN has been utilized to synthesize images with more 
realistic features and visual quality. However, it is recently demonstrated that the use of the 
adversarial loss does not necessarily lead to better quantitative performance for image synthesis [22]. 
For medical imaging tasks which demand image accuracy over visual quality, the use of GANs 
requires careful considerations.  

The use of deep learning-based methods has become increasingly prevalent in this domain. 
However, due to the inherent "black box" nature of such techniques, the interpretability of their 
performance remains a challenge. To address this limitation, this study introduces the application of 
Monte Carlo dropout as a means to enhance the interpretability of the developed model. 

3. Methods 

Given a LR T2, we first feed it into a U-Net and then use monte carlo dropout in the inference time. 

3.1. U-Net Architecture 

We employ a U-Net [23] as the baseline model to synthesise T1-weighted MRI from T2-weighted 
input (Fig. 1). The U-Net architecture, a widely used deep learning framework in medical image 
analysis, is characterized by its multi-level design, which incorporates both multi-scale encoding and 
decoding capabilities. This hierarchical structure enables the network to capture both global and local 
features of the input data, facilitating comprehensive image analysis. Specifically, the lower levels of 
the U-Net are dedicated to encoding the global information of the brain image, allowing the network 
to understand the overarching context of the data. On the other hand, the upper levels focus on 
encoding finer details and local features, enabling the network to capture intricate patterns within the 
image. 
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Figure 1: Network architecture. The U-Net [23] with Monte Carlo Dropout [15] entitled “DU-Net” is 
illustrated.  

In our implementation, we adhered closely to the original design principles of the U-Net 
architecture. At the initial level, the U-Net employs 48 convolution kernels, a configuration that is 
commonly used to balance computational efficiency and feature representation capacity. 
Subsequently, the number of convolution kernels is doubled after each max-pooling layer during the 
encoding process, allowing the network to progressively extract more abstract features from the input 
data. Conversely, during the decoding phase, the number of convolution kernels is halved after each 
upsampling layer, ensuring that the network can effectively reconstruct the input data while 
preserving important features. 

One of the key advantages of utilizing 3D convolutions within the U-Net architecture is their 
enhanced effectiveness in leveraging information from an additional spatial dimension in volumetric 
MRI data. This spatial context is crucial for accurately capturing the complex structures and 
relationships present in three-dimensional medical images. Moreover, 3D convolutions have been 
shown to generate images with reduced boundary artifacts compared to their 2D counterparts, leading 
to improved overall image quality. 

However, it's important to note that common graphics processing units (GPUs) often have limited 
memory capacity, which can pose challenges when working with large 3D volumes at high spatial 
resolutions. To address this limitation, we employ a strategy where the inputs to the 3D U-Net are 
divided into smaller blocks, each consisting of 64 × 64 × 64 voxels. This approach allows us to 
efficiently process volumetric MRI data within the memory constraints of standard GPUs. 

3.2. Loss Function 

In this study, we use the mean absolute error (MAE) as a loss function to optimize the model. It 
calculates the absolute differences between the predicted values and the actual values, and then 
averages these differences. The formula for MAE is: 

ℒℳ𝒜ℰ =
"
#
∑ |𝑦$ − 𝑦%&|#
$&" (1) 

Among them: ℒℳ𝒜ℰis the value of the MAE loss function,𝑛 is the number of samples, 
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𝑦$ is the true value for the 𝑖 sample, 𝑦%&  is the predicted value for the 𝑖 sample. 
MAE provides a straightforward interpretation of the error magnitude, as it treats all individual 

differences equally by considering their absolute values. 

3.3. Evaluation Method 

We use the mean square error (MSE) as an evaluation function to measure the predictive performance 
of the model. The mean square error mainly takes the mean of the square variance between the 
predicted value and the actual value to calculate the loss value of the forecast model, as shown in the 
equation (2) below. 

𝑀𝑆𝐸 = "
#
∑ (𝑦$ − 𝑦/$)'#
$&" (2) 

Where:	𝑛	is the number of samples; 𝑦$ 	is the true value for sample 𝑖; 𝑦%&  is the predicted value for 
sample 𝑖. 

A smaller MSE indicates that the predicted values are closer to the actual values, implying better 
model performance. 

3.4. Monte Carlo Dropout 

To enhance our network's capacity for uncertainty quantification, we have integrated Monte Carlo 
Dropout layers, a technique introduced by Avci et al. [15], into our architecture. These dropout layers 
are strategically inserted after each convolutional layer at every level of the U-Net framework. 
Traditionally, dropout layers are employed solely during the training phase to mitigate overfitting and 
enhance model robustness, as outlined by Srivastava et al. [24]. However, in our implementation, we 
extend the use of dropout layers to both training and inference stages. This enables our network to 
generate results with diverse configurations for different inference scenarios, as illustrated in Figure 
1. 

The utilization of dropout layers during inference introduces variability in the network's 
predictions, effectively simulating results from slightly different network architectures. This 
variability arises from the activation or deactivation of different nodes during random dropout 
repetitions. Consequently, each inference yields slightly different outcomes, reflecting the inherent 
uncertainty in the model's predictions. By performing multiple inferences and subsequently averaging 
the results, we can mitigate errors stemming from network variance, thereby obtaining more reliable 
predictions. Additionally, by computing the standard deviation across multiple inferences, we can 
quantify the uncertainty associated with the network's estimations, providing valuable insights into 
the reliability of the model's predictions under varying conditions. This comprehensive approach to 
uncertainty quantification equips our network with the capability to not only produce accurate 
predictions but also assess the confidence level associated with each prediction, enhancing the overall 
reliability and interpretability of the model. 

4. Experiments 

4.1. Dataset 

We used MRI data from the Human Connectome Project (https://www.humanconnectome.org/) in 
this study. The T1-weighted images were acquired on 3T MRI scanners using a 3D magnetization-
prepared gradient echo (MPRAGE) sequence at 0.7 mm isotropic resolution. The T2-weighted 
images were acquired within the same session using a 3D turbo spin-echo (TSE) sequence with slab 
selective, variable excitation pulse at 0.7 mm isotropic resolution. The scan time for T1- and T2-
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weighted images is 7 and 8 minutes respectively. The T1- and T2-weighted images are pre-processed 
and co-registered.  

4.2. Implementation Details 

The network illustrated in Fig. 1 was implemented using Keras library (keras.io) with a TensorFlow 
backend(tensorflow.org) using a NVIDIA GeForce RTX 4090 with 24GB memory.  

Network was trained using 40 randomly selected healthy subjects with 20% of the data used for 
validation. The DU-Net and U-Net were both trained with T2-weighted image as input and T1-
weighted image as output and optimised with an Adam optimiser with default parameters for 10 
epochs using mean absolute error as the loss function (~2 minutes per epoch).  To validate our model’s 
potential in further accelerating the MRI acquisition, we retrospectively downsampled the input T2-
weighted image to 1.4 mm isotropic resolution and used the low-resolution T2-weighted image as the 
input of the network (denoted as “undersampled”). The networks with the lowest validation error 
were saved and applied.  The dropout layers in the DU-Net were activated during both training and 
inference (dropout rate=0.2).  

Another 20 subjects unseen during training were used for the evaluation of the network. During 
the inference, DU-Net was applied 20 times with dropout layers activated, which led to 20 output 
images. The 20 output images were averaged to generate the final output of DU-Net with reduced 
variance. The standard deviation of the 20 images was calculated to reflect the model uncertainty. 
The mean squared error (MSE) of network output images with the native T1-weighted images was 
calculated to evaluate image similarity and model performance. 

5. Results 

 
Figure 2: Image results. The input T2-weighted images, reference T1-weighted images, network 
output T1-weighted images, and the difference between reference and network output from different 
models are demonstrated. “Under-sampled” indicates the input was retrospectively under-sampled to 
generate a low-resolution image which takes shorter acquisition time. The mean squared error (MSE) 
between reference and network output is listed to quantify the image similarity. 

Figure 2 demonstrates the image results of different models. Both U-Net and DU-Net produce high-
fidelity T1-weighted images from T2-weighted input. Under-sampling T2-weighted input slightly 
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compromises the network performance, due to the information loss in lower-resolution input. 
However, a lower-resolution input (1.4 mm isotropic resolution in our study) requires shorter 
acquisition time (~1 min), which is helpful especially for clinical practice. DU-Net produces images 
with lower MSE compared to U-Net, because the averaging of multiple inferences reduces the 
variance and improves the accuracy and robustness. The mean MSE for 20 evaluation subjects is 
0.0585, 0.0605, and 0.0600 for U-Net (no under-sampling), U-Net (under-sampled), and DU-Net 
(under-sampled) respectively.  

 
Figure 3: Image results and uncertainty estimation from multiple subjects. The under-sampled low-
resolution T2-weighted image input, reference T1-weighted image, DU-Net output T1-weighted 
image, the difference between reference and network output, and the uncertainty estimation from 2 
evaluation subjects are demonstrated. 

Figure 3 shows the image results and uncertainty estimation from DU-Net with under-sampled 
low-resolution T2-weighted images as input from 2 evaluation subjects. The model exhibits decent 
performance on different subjects, generating T1-weighted images highly similar to the native T1-
weighted images. Notably, the estimated uncertainty map shows similar patterns to the error map, 
indicating our method successfully captures the model uncertainty.  

6. Discussion 

Our proposed approach introduces a sophisticated deep learning model, DU-Net, aimed at facilitating 
image synthesis and uncertainty estimation for high-resolution multi-modality MRI. Leveraging the 
power of deep learning, DU-Net demonstrates remarkable capabilities in generating high-fidelity T1-
weighted images from under-sampled, low-resolution T2-weighted images, closely resembling the 
reference native T1-weighted images. Notably, DU-Net achieves this with significantly lower Mean 
Squared Error (MSE) compared to the baseline U-Net, underscoring its superior performance in 
image synthesis tasks. Additionally, our model produces uncertainty maps that exhibit similar 
patterns to the corresponding error maps, providing valuable insights into the reliability and 
confidence associated with each synthesized image. Such capabilities hold immense potential to 
revolutionize the field of MRI imaging by significantly enhancing imaging speed without 
compromising diagnostic accuracy, thereby benefiting both clinical practice and scientific research 
endeavors. 

Central to the design of our model is the incorporation of Monte-Carlo dropout, a technique 
commonly used to mitigate network overfitting and enhance training robustness. In our 
implementation, dropout layers are activated during both training and inference stages, enabling the 
network to generate diverse outputs for different inference scenarios. These variations in inference 
outcomes reflect the inherent variance within the model, which can be effectively reduced by 
averaging multiple inferences to improve model accuracy. Furthermore, quantifying the deviation 
among these inferences allows for the estimation of uncertainty, providing valuable information 
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regarding the reliability of synthesized images in different regions. In practical scenarios where 
reference images are unavailable, and error maps cannot be computed, uncertainty maps serve as 
invaluable tools for assessing the trustworthiness of synthesized images, thereby enhancing clinical 
decision-making and diagnostic confidence. 

Our method has potential to accelerate the 15-min imaging to less than 1 minute. By retrospective 
undersampling, we demonstrate the model produces images with high quality even with lower-
resolution inputs (1.4 mm, Fig. 2). Acquiring T2-weighted images at 1.4 mm resolution requires 
substantially shorter scan time using fast imaging techniques such as echo planar imaging (EPI) [25]. 
For reference, in the Human Connectome Project, the acquisition of T2-weighted images using EPI 
at 1.25 mm isotropic resolution only requires 8 seconds. Even if multiple volumes are required for 
correcting geometric distortions and/or reducing the noise level, the acquisition time will still be 
significantly shortened. 

This study underscores the transformative potential of deep learning in advancing the field of 
multi-modality high-resolution MRI, offering faster and more reliable imaging solutions. Future 
endeavors may focus on conducting systematic analyses of network-generated images, such as 
segmentation and lesion quantification, to further elucidate their clinical utility and pave the way for 
their broader adoption in medical practice and research settings. The generalization of the proposed 
model also warrants further investigation. Theoretically, the improvement in robustness brought by 
the Monte-Carlo dropout should also benefit the network generalizability, further promoting its use 
in research and clinical practice. 

While GANs have emerged as a popular choice for contrast transfer tasks in medical imaging, our 
decision to employ a plain U-Net in lieu of GANs is informed by recent findings indicating that GANs 
may not necessarily improve quantitative performance. Moreover, integrating GANs into our model 
would introduce additional complexities in training and generalization, potentially hindering its 
efficiency and effectiveness. However, the prospect of combining adversarial loss in GANs with 
Monte-Carlo dropout presents an intriguing avenue for future research, warranting further exploration 
and investigation into its potential synergies and benefits.  

7. Conclusion 

In conclusion, our study presents DU-Net, a deep learning model for high-resolution multi-modality 
MRI image synthesis and uncertainty estimation. DU-Net excels in generating high-fidelity T1-
weighted images from under-sampled T2-weighted inputs, outperforming baseline methods with 
lower MSE. Additionally, DU-Net produces uncertainty maps mirroring error maps, enhancing 
confidence in image reliability. This advancement promises accelerated imaging without sacrificing 
diagnostic accuracy, benefiting clinical practice and research. While GANs are popular, our use of 
U-Net over GANs is informed by their limited quantitative improvement and added complexity. 
Monte-Carlo dropout integration enhances model robustness and enables diverse inference outputs 
for uncertainty estimation. Our method reduces a 15-minute procedure to less than 1 minute, 
underscoring its potential clinical impact. Further research may explore systematic analysis of 
network-generated images for broader adoption in medical practice and research. 
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