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Abstract: The rapid evolution of the Internet industry has transformed software development 
in emerging fields, making it markedly different from traditional approaches. Consequently, 
software testing has become increasingly complex. Artificial Intelligence (AI) has introduced 
innovative technologies and methodologies to software testing, attracting growing research 
interest in recent years. This study employs a systematic literature review to gather and 
analyze relevant research on AI applications in software testing over the past four years. 
Through careful screening, synthesis, and organization of literature, the study provides a 
detailed analysis of research progress in this field. The review examines 30 carefully selected 
papers, primarily focusing on the technical advancements and applications of AI in software 
testing within emerging domains such as cloud technology, autonomous driving, and DevOps. 
It explores various AI applications in software testing, including test case generation, GUI 
testing, and defect prediction. As a comprehensive review, this paper summarizes recent 
progress in AI technology applications for software testing, with particular emphasis on 
emerging trends. Based on these findings, the study proposes potential research directions 
and topics, offering valuable insights and laying a foundation for future work in this rapidly 
evolving field. 
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1. Introduction 

Software testing, a crucial component of software engineering, can consume up to half of the time 
and cost in the development process [1]. While continuous integration and continuous 
delivery/deployment (CI/CD) can enhance testing efficiency and reduce time costs through well-
designed automated testing and effective development process management, these approaches still 
demand ongoing investment from skilled software test engineers. 

In recent years, software development has evolved significantly with advancements in cloud native 
technology, big data, and the Internet of Things (IoT). Simultaneously, new fields like autonomous 
driving, augmented reality (AR), and virtual reality (VR) have created unprecedented demand for 
innovative software solutions. These shifts have dramatically altered software products' form, design, 
development processes, user base, and usage scenarios. Consequently, software testing has become 
more intricate and multifaceted than ever before. Furthermore, as agile development and DevOps 
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practices gain widespread adoption among development teams, quality assurance has expanded 
beyond the traditional post-development testing phase. It now encompasses the entire lifecycle of 
software products—from initial design through development, release, and launch. This expansion 
necessitates improved test efficiency, broader testing methodologies, and enhanced test scale and 
coverage to address the increasingly complex challenges of modern software development. 

To address the numerous challenges in software testing mentioned earlier, applying artificial 
intelligence (AI) technology and methods has emerged as a promising solution. AI-based software 
testing introduces innovative approaches to enhance test efficiency, accuracy, and effectiveness, 
enabling better management of software testing issues in various new and complex scenarios. With 
these advancements, developers can construct more comprehensive tests and ensure the reliability of 
software systems. 

Traditional software testing often relies heavily on manual labor to complete complex tasks, which 
comes with several drawbacks: lengthy test cycles, inadequate code coverage across all possible 
branches, and the ever-present risk of human error. While automating some repetitive tasks can be an 
effective solution, there's still significant room for improvement in overall testing efforts. AI and 
machine learning-based software testing offers a more sophisticated approach. These technologies 
can leverage vast amounts of data to automatically generate, construct, execute, and analyze tests. By 
predicting potential defects based on historical data, AI-driven testing enables faster execution, 
shorter cycles, improved coverage, and enhanced issue detection. This not only streamlines the testing 
process but also addresses many of the limitations inherent in traditional manual testing methods. 

This article will examine the recent advancements in AI applications for software testing in 
emerging fields, discussing their benefits, limitations, and future potential through specific case 
studies. Furthermore, it will categorize the current research focus areas within testing classifications 
and tasks, evaluate testing effectiveness, identify areas for future coverage, and explore new potential 
AI applications in software testing for emerging fields. 

2. Background and related work 

2.1. Overview of software testing 

The ANSI/IEEE 1059 standard defines software testing as the process of examining software to 
identify discrepancies between its current state and its intended state (commonly referred to as defects, 
errors, bugs, or faults) and evaluating various aspects of the software [2]. As a vital process in the 
lifecycle of software development, the primary objective of software testing can be concisely 
summarized as identifying discrepancies, errors, defects, and missing features between the software 
product and its originally specified requirements.  

 
Figure 1: Testing levels 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/112/2025.18116 

162 



 

Software testing can be categorized based on the test task type, testing level, and its association 
with specific stages in the software development process. It is typically divided into four distinct 
levels: unit testing, integration testing, system testing, and acceptance testing, as illustrated in Figure 
1.   

Software testing can also be categorized into two main types: manual testing and automated testing, 
in which the content of manual testing can be subdivided into many types according to the specific 
situation. Automated testing, on the other hand, is a programmatic treatment of repetitive work in 
some manual tests, as shown in Figure 2. 

 
Figure 2: Types of software testing 

In the specific classification of testing tasks, white-box testing allows testers to see all the 
software's code. In contrast, black-box testing conceals the code from testers during the test. This 
approach prevents testers from designing test cases with preconceived notions, enabling them to 
identify software issues more effectively. Black-box testing further divides into two parts: functional 
and non-functional testing. Functional testing verifies the software's functional requirements, while 
non-functional testing evaluates its performance, usability, stability, and security. For these various 
categories of testing tasks, automated testing can offer distinct benefits. Likewise, applying AI 
technology to specific software testing tasks presents multiple opportunities for implementation and 
improvement. 

Additionally, from the perspective of the software testing lifecycle, testing can be divided into 
distinct phases: requirements analysis, test planning, test case design, test environment setup, test 
execution, and test cycle closure. Figure 3 illustrates this process. 

From these perspectives, AI-driven software testing can enhance the testing process across 
multiple levels and angles. These enhancements include, but are not limited to, test design, use case 
generation, test planning, test environment deployment, test execution, defect prediction, and analysis. 
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Figure 3: Software testing lifecycle 

2.2. Related work 

In recent years, significant practical research has advanced the application and development of AI in 
software testing. Since 2019, IEEE has hosted five international academic conferences focused on AI 
Testing, exploring topics of "the usage of artificial intelligence for software testing" and "the testing 
of artificial intelligence methods themselves" [3]. These conferences have yielded 111 relevant papers. 
There are some examples of specific research literature: Ehab Ebrahim, Mazen Sayed, et al. proposed 
an AI-based chatbot to improve the organization of release planning and resource management in the 
process of software development and testing [4]; Faqeer Ur Rehman, Madhusudan Srinivasan, et al. 
analyzed and studied the application prospects and challenges of transformation testing for machine 
learning [5]; Yue Ding, Qian Wu, Yinzhu Li, et al. proposed a method based on deep learning to 
improve the detection of cross-function null pointer risk in unit testing [6]; Yejun He, Muslim Razi, 
et al. designed a testing framework for autonomous vehicle using AI semantic models [7]; Caglar 
Osman, Taskin Furkan, et al. developed a software testing platform based on cloud and AI, called 
ChArIoT [8]. 

Overall, these research directions primarily focus on specific AI applications in various aspects of 
software testing. They rarely discuss necessary improvements or adjustments at the algorithmic level 
for AI in software testing scenarios. Moreover, much of the research is based on actual production 
and analyzed in conjunction with specific practical scenarios, making these findings more valuable 
for practical implementation. Additionally, several studies have explored recent advances in applying 
large deep learning models, including ChatGPT, convolutional neural networks (CNNs) for image 
recognition and object detection, and generative AI. 

Currently, there is no shortage of raw data for testing in real production scenarios, but model 
training requires processed data. Machine learning training datasets for different scenarios are still 
insufficient. This part of the work needs to be further developed and improved in the future. 

3. Research Methodology 

This article employs the SLR (systematic literature review) methodology developed by Angela 
Carrera-Rivera, William Ochoa, et al. [9].  

The review centers on the keyword "Artificial Intelligence in Software Testing," focusing on 
developments in emerging fields from 2021 to 2024. The study's data sources are confined to five 
prominent databases: Scopus, Web of Science, EI Compendex, IEEE Digital Library, and ACM 
Digital Library. Table 1 provides detailed information about these databases. 
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Table 1: Details of databases 

Database Area URL 
Scopus Interdisciplinary http://www.scopus.com/ 
Web of Science Interdisciplinary https://www.webofscience.com/ 
EI Compendex Engineering http://www.engineeringvillage.com/ 
IEEE Digital 
Library Engineering and Technology http://ieeexplore.ieee.org/ 

ACM Digital 
Library 

Computing and information 
technology https://dl.acm.org/ 

 
Based on this topic, the paper presents the following research questions (RQs): 

• RQ-1: What are the applications of Artificial Intelligence in software testing? 
• RQ-2: What methods of artificial intelligence are commonly used? 
• RQ-3: What are the pros and cons of AI testing? 
• RQ-4: How to evaluate the effectiveness of AI testing? 
• RQ-5: What are the challenges of applying AI methods to software testing in emerging fields? 

The search strategy for this article is illustrated in Figure 4. First, the entry and exit criteria for the 
search are defined and the initial search is carried out within the scope of the selected database. Then, 
the preliminary results obtained from the search are manually reviewed, and the corresponding 
Quality Assessment Checklist (QA Checklist) is established to fine screen the selected results. In the 
end, about 30 articles are obtained for review analysis. 

 
Figure 4: Search strategy 

The various criteria used for the search are shown in Table 2. 

Table 2: Inclusion and exclusion criteria 

Criteria Type Description Inclusion & Exclusion 
Period The publication date range of articles Inclusion: From 2021 to 2024 
Language The language of articles Inclusion: In English 
Type of 
Literature 

Exclude articles that fall into the gray 
category 

Inclusion: Conference Article, 
Journal Article 

Impact Source 
Filter for articles that meet the 
source's impact factor or quartile 
requirements 

Exclusion: Impact Score lower than 
x* 

Relevance to 
RQs 

Consider the relevance of articles to 
RQs 

Inclusion: Associated with at least 2 
RQs 

*The x value is adjusted according to the search. 
 
Through the above criteria, a preliminary search was finally carried out in various databases. 

Although the search strings differ slightly in format and content, it can be ascertained that each 
database follows the same search criteria. According to the content of the preliminary screening, the 
retrieved data files are exported from each database. After converting it to a CSV file, it can be used 
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for further fine screening and data processing. The QA Checklist is shown in Table 3. It is used to 
assess the quality of the obtained literature and to conduct a fine selection based on the examination 
results. 

Table 3: QA Checklist 

Check Points Questions Level Assessment 

Latest Research Is the study up to date? 
1. Before 2022 (Score: 0)  
2. 2022-2023 (Score: 1)  
3. After 2023 (Score: 2) 

Domain 
Relevance 

Whether the study has a strong correlation 
with software testing, especially in emerging 
fields? 

1. No (Score: 0) 
2. Partially (Score: 1) 
3. Yes (Score: 2) 

Reliability 
Are there any issues (shortcomings, 
limitations) about the validity of the results of 
the study discussed in the article? 

1. No (Score: 0) 
2. Partially (Score: 1) 
3. Yes (Score: 2) 

Clear Topics on 
Research 

Does the article give a specific 
definition/description of the research 
purposes/motivations/problems/goals? 

1. No (Score: 0) 
2. Partially (Score: 1) 
3. Yes (Score: 2) 

Practicality Does the article provide specific examples of 
practice? 

1. No (Score: 0)  
2. Yes (Score: 2) 

Innovation Whether the article is innovative enough? 
1. No (Score: 0) 
2. Partially (Score: 1) 
3. Yes (Score: 2) 

 
Eventually, 30 articles were finally obtained from the databases as the objects of the review study. 

In the selected literature, the data were extracted and summarized around the range of indicators 
mentioned in Table 4. The content of each article is read and analyzed in detail to form relevant report 
content. 

Table 4: Indicators of data extraction 

Data Extraction Types Specifics 
General Information Year of Publication, Publisher, Document Type 
AI Methods & Algorithms Specific AI Approaches 
Fields Related Application Areas 
Testing Information Testing Tasks, Testing Types, Testing Level 
Performance Assessments, Efficiency Improvement, Accuracy 

4. Results 

4.1. Report 

The findings of these studies are summarized as shown in Table 5 through the reading and analysis 
of the selected research papers. 
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Table 5: Findings of selected studies 

Paper Id Year Publisher Findings 

1 [10] 2024 IEEE 

The article introduces Mitra, an AI-driven software testing architecture that 
leverages machine learning and natural language processing techniques. 
Mitra automatically generates and optimizes test cases, with a focus on edge 
cases, thereby effectively improving test coverage. Furthermore, the 
framework incorporates crucial features for predicting potential software 
defects using historical data. 

2 [11] 2024 IEEE 

This article details the application of AI and machine learning techniques for 
optimizing test cases in web applications. The authors introduce a novel 
model called the Regression Vector Analysis Model (RVA). Implementing 
this model has enhanced the test sequence quality and improved the test 
model's performance. The system's accuracy has reached 92%, while the 
Matthews Correlation Coefficient (MCC) index has achieved 98%. 

3 [12] 2024 SPRINGER 

The authors present an industry study on AI technologies and tools in GUI 
testing. Through a survey of 45 respondents, they analyze specific 
applications of AI in this field. Results reveal that current practitioners' use of 
AI tools is limited in both scope and depth, indicating a need for further 
research. The study also highlights AI's broader potential in GUI testing. 

4 [13] 2024 IEEE 

This paper comprehensively reviews and analyzes the application of LLMs 
(large language models) in software testing. It examines 102 studies related 
to software testing using LLMs and discusses representative tasks such as test 
case design and code repair. Additionally, the paper provides a roadmap and 
potential exploration pathways for future research. 

5 [14] 2024 IEEE 

This paper addresses the challenge of deploying AI deep learning models on 
resource-constrained mobile devices by introducing SafeCompress, a test-
driven sparse training framework. SafeCompress automatically compresses 
large models into smaller ones by simulating attack mechanisms as a security 
test. The effectiveness and generality of the framework are validated through 
extensive experiments conducted on five datasets. 

6 [15] 2024 MDPI 

This article introduces AVESYS, a framework designed to integrate open-
source AI algorithms into the testing process for embedded systems. The 
framework addresses quality assurance challenges in embedded software for 
autonomous vehicles. The paper evaluates AVESYS's effectiveness in 
detecting test environment anomalies that could impact results, highlighting 
AI's significant potential in embedded software testing. 

7 [16] 2024 ACM 

This paper proposes a defect prediction model based on static code detection, 
applying machine learning techniques to the process of fault prediction. The 
study notes that two models have been developed, with results demonstrating 
high accuracy and practical utility. 

8 [17] 2024 IEEE 

Test-Driven Development (TDD) is an agile approach that requires 
developers to design and write functional code based on unit tests. The 
authors introduce GAI4-TDD, a generative AI tool for test-driven 
development, which includes a PyCharm plugin. This plugin can generate 
production code from tests written by TDD developers. The study verifies 
the practical application of the plugin in three embedded system 
development environments and provides an initial evaluation of GAI4-
TDD's effectiveness. 

9 [18] 2024 IEEE 

This article introduces AI-driven CI/CD as an innovative approach to 
managing and updating software projects. Leveraging artificial 
intelligence, these processes automate the entire software delivery and 
deployment pipeline. This automation includes parallel testing of multiple 
versions, resulting in significant time and cost savings. 
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Table 5: (continued) 

10 [19] 2024 IEEE 

This article explores the application of generative AI and large language 
models (LLMs) in unit test generation. The study experimented with using 
Gen AI to create unit tests for Python code. The authors analyze and 
discuss the experimental results and outline future work in this area. 

11 [20] 2024 IEEE 

This article introduces Test-Spark, an open-source IntelliJ IDEA plug-in 
that uses AI to quickly generate unit tests in an integrated development 
environment. The authors provide a detailed analysis of its technical 
implementation principles and compare its advantages to existing tools. 
Additionally, they discuss future research plans and preliminary results 
related to the plug-in. 

12 [21] 2023 IEEE 

This article examines the integration of vision AI and behavior-driven 
development (BDD) in software test automation. It aims to assess the 
impact of this integration on test creation, execution, and maintenance. 
The study investigates and evaluates a Visual Test Framework that 
incorporates vision AI tools, using a hybrid approach. 

13 [22] 2023 IEEE 
This paper discusses the specific implementation of machine learning and 
deep learning technology in software testing and makes a comparative 
analysis of these aspects. 

14 [8] 2023 IEEE 

The authors introduce ChArIoT, a cloud-based web platform that uses AI 
and the MERN stack architecture to mutate Python test code. This scalable 
and cost-effective solution offers a flexible testing environment, better test 
coverage, and improved accuracy. By incorporating AI into mutation 
testing, the platform significantly cuts down on time and resources, 
boosting the testing process's effectiveness and efficiency. 

15 [23] 2023 SPRINGER 

This article introduces TestLab, an intelligent automated testing 
framework. It integrates a range of test methodologies and automates them 
using AI technology to allow continuous testing of software systems at 
multiple levels. The framework also includes features such as 
vulnerability identification and test case generation. 

16 [24] 2023 IEEE 

The article illustrates and validates the application of AI and machine 
learning techniques in software defect prediction (SDP) through Nokia's 
5G wireless technology test process and extends its concept to the entire 
software development lifecycle. Finally, the applicability of the method 
in optimizing the whole test cycle is verified by the results, and its 
application prospects in other large-scale industrial software development 
processes are discussed. 

17 [25] 2023 SPRINGER 
This article describes the development process of EvoMaster, an open-
source tool. EvoMaster is designed to automatically generate system-level 
test cases for enterprise applications. 

18 [26] 2023 SPRINGER 

This paper studies and discusses the specific algorithms used in software 
defect prediction, including the War Strategy Optimization (WSO) 
algorithm and the Kernel Extreme Learning Machine (KELM) for SDP. 
At the same time, the paper also gives a detailed description and analysis 
of the application of algorithms in specific Internet of Things (IoT) 
scenarios. 

19 [4] 2023 IEEE 
This paper proposes an AI-based chatbot to improve the release planning 
organization and resource management in the software development and 
testing process. 

20 [6] 2023 IEEE This paper introduces a deep learning method to enhance the detection of 
cross-function null pointer risks in unit testing. 

21 [7] 2023 IEEE This article designs and implements a testing framework for autonomous 
vehicle using AI semantic models and details its design and practice. 
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22 [27] 2022 ACM 

This article offers an overview of AI's significant impact on the testing 
process and identifies key AI techniques used in various testing activities. 
It also provides a comprehensive study of test automation tools, shedding 
light on the role of AI in industrial testing tools. 

23 [28] 2022 IEEE 

The authors propose an AI-based approach to behavioral cloning in a 
specific domain to enhance automated software testing. Using online 
stores as a case study, they discuss a preliminary investigation of this 
scheme. The study presents initial results and outlines a roadmap for 
future research. 

24 [29] 2022 IEEE 

The article introduces CRISCE, a method for generating accurate car 
crash simulations from accident sketches. This innovative approach 
efficiently creates simulations to enhance test cases for critical driving 
scenarios, particularly collisions. Ultimately, CRISCE aims to improve 
the testing of autonomous driving systems for vehicles. 

25 [30] 2022 IEEE The article provides a Transformers for GUI testing to solve the problem 
of automatic test case generation and Flaky Test. 

26 [31] 2022 MDPI 

This article introduces DePaaS (Defects Prediction as a Service), a cloud-
based, global, and unified AI framework for defect prediction. It details 
the context, use cases, and architectural aspects of DePaaS, along with its 
specific practical applications. 

27 [32] 2022 IEEE 

This paper presents specific strategies for improving automatic test case 
generation algorithms. It proposes a scheme that combines multiple AI 
approaches to enhance the effectiveness and efficiency of automated test 
case generation. Additionally, the article offers concrete suggestions and 
ideas for implementing the algorithm in practice. 

28 [33] 2021 SAI This article examines the application of AI technology in software testing, 
as of 2021, and explores its potential to streamline the testing process. 

29 [34] 2021 ACM 

The author proposes a vision for a platform called Test'n'Mo. This 
platform aims to leverage artificial intelligence and machine learning as 
the technical foundation for a hybrid system that combines software 
testing and runtime monitoring. The goal is to enable collaboration 
between learning agents and runtime monitoring and testing agents to 
achieve shared testing objectives. 

30 [35] 2021 IEEE 

This article introduces RiverFuzzRL, an open-source tool that combines 
reinforcement learning and fuzzing techniques. The authors suggest that 
this combination could be a significant advancement in software testing. 
By implementing RiverFuzzRL, a sophisticated AI-guided fuzzing 
framework, they aim to enhance software testing outcomes. The study 
explores the method's applicability to various types of software testing 
and examines potential opportunities and challenges. 

4.2. Responses to RQs 

4.2.1. RQ-1: What are the applications of Artificial Intelligence in software testing?  

For this question, the following aspects can be summarized through the study of the selected literature 
as the specific application of AI in software testing: 

• Test Case Generation - This topic has been addressed in several articles and research studies. 
Machine learning and deep learning techniques enable the use of large datasets as a foundation for 
test case generation. Furthermore, generative AI shows promise in automating test case creation 
for more complex scenarios. 

Table 5: (continued). 
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• GUI Test - This direction allows AI to demonstrate its capabilities more tangibly. As computer 
vision and object detection technologies continue to advance, machines are becoming increasingly 
proficient at analyzing and recognizing images. Consequently, GUI testing—a task that once 
heavily depended on human effort—can now be effectively managed by AI. 

• Defect Prediction - Several studies have highlighted AI's role in defect prediction. By analyzing 
vast amounts of historical problem data, AI—particularly through machine learning methods—
can significantly aid in predicting software defects. These studies also discuss various defect 
prediction solutions, such as DePaaS [31], that integrate DevOps and cloud technologies. These 
integrated approaches offer more comprehensive and reliable defect prediction support through 
broader and more efficient data collection. 
In addition, the studies also cover the use of AI in the following sections: test planning, test 

prioritization, test case optimization, test execution, mutation test, test coverage, unit test, and 
embedded test. 

4.2.2. RQ-2: What methods of artificial intelligence are commonly used?  

For this question, the following specific methods or directions of AI can be summarized from the 
study of the selected literature: machine learning, deep learning, reinforcement learning, large 
language models, computer vision, behavioral cloning, generative AI, and natural language 
processing. 

Within the scope of the selected articles, most of the articles focus on exploring the use of AI 
technology in different aspects of software testing. There is little discussion about specific methods 
or algorithm improvements in AI, with only a few articles on this: 

• Paper [18] discusses AI-driven CI/CD, which mentions the application and improvement of 
several algorithms, including NLP (Natural Language Processing), CSA (Cuckoo Search 
Algorithm), ROA (Randomized Optimization Algorithms), and PSO (Particle Swarm 
Optimization). 

• In paper [26], the application of WSO and KELM algorithms for defect prediction on the IoT is 
discussed. 

• A test case generation scheme based on the Behavioral Cloning method is proposed in the paper 
[28]. 

4.2.3. RQ-3: What are the pros and cons of AI testing? 

The study summarizes some of the advantages and disadvantages of AI testing, as shown in Table 6. 

Table 6: The pros and cons of AI Testing 
Pros Cons 

- Significant efficiency gains 
- Labor cost savings 
- Effective increase in test 
coverage 
- Increased depth and breadth of 
testing 
- Provide creative and inspiring 
ideas for complex new scenarios 

- Because the objects being tested (i.e., different software products) are very 
different, there is a certain cost to build an AI model  
- While there is plenty of test data, there are fewer processed datasets for 
machine learning or deep learning 
- The reliability and completeness of AI testing itself has yet to be verified, but 
the question of how to test AI programs (Test for AI) is actually more complex  
- The testing tasks that AI technology can currently involve are not 
comprehensive enough, and there are still many parts that still require human 
intervention and processing by experienced engineers or experts 
- AI itself also requires a certain software and hardware resource base, and 
there is a certain threshold, and the cost of using AI in the actual production 
environment needs to be considered 
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4.2.4. RQ-4: How to evaluate the effectiveness of AI testing?  

In fact, for applications in the testing field, the validation of the validity of AI tests is no different 
from the validation of the validity of general testing behaviors, and it is sufficient to verify them using 
the same or similar methods. For most simple test scenarios or test tasks, the validity verification of 
AI testing can be demonstrated by a simple comparison of results—that is, the test task is manually 
completed with traditional testing methods, and if the results are consistent, the test process and 
conclusions are valid. 

For relatively complex scenarios, it is necessary to consider constructing some specific metrics for 
data statistics and analysis to determine the effectiveness of AI testing. Specific metrics include the 
following: accuracy, precision, specificity, recall, F1 score, ROC, AUC, ACC, and confusion matrix. 

4.2.5. RQ-5: What are the challenges of applying AI methods to software testing in emerging 
fields?  

Emerging areas here include, but are not limited to, the following: DevOps, Cloud-Native, 
Autonomous Vehicle, IoT, and Games. 

In these areas, the requirements and tasks of software testing differ from those of traditional 
software testing in the past. In more and more scenarios, software testing emphasizes quality 
assurance throughout the software development lifecycle. Internet companies that are on the front 
line of testing left and testing right are often mentioned topics. As a result, AI faces some specific 
challenges in software testing in these emerging areas: 

• In the cloud scenario, how to better solve the test problem of distributed systems? 
• Sometimes the failure of SDN (software-defined networking) systems is not necessarily a bug in 

the code at the functional level, but a problem or limitation of hardware resources that causes the 
failure at the software level. What better solution to this problem is software testing or quality 
assurance? 

• What can AI do in performance testing? What are the advantages of AI technology in the face of 
system stress testing scenarios with huge traffic volumes? 

• Legal and ethical issues still need addressing in the adoption of AI technology for safety and 
stability testing. This is especially crucial for autonomous driving, as it directly impacts human 
lives. 

5. Analysis and discussion 

5.1. General discussion 

In the realm of software testing, AI shows great development potential and promising applications. 
The fresh topics presented annually at IEEE's AI Test conference, along with the steady growth of 
research interest in various specific directions, demonstrate that this field still has significant room 
for expansion and innovation. 

Through the analysis of research papers in recent years, this paper can summarize some parts of 
the testing field that are of concern but have not yet been involved in AI testing: 

• By leveraging AI for traffic playback, the effectiveness and timeliness of performance testing can 
be improved and enhanced, which will provide more reliable and rich performance test data. 

• By realizing automatic periodic fault injections in large-scale clusters based on machine learning, 
the concept of chaos engineering can be practiced improving the stability and reliability of the 
system, and the pain points of self-recovery of large-scale distributed systems can be explored. 
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• By analyzing and summarizing the LOG information more abstractly based on LLMs, and 
combining deep learning to summarize past defect cases, the defect location function at the code 
level is faster and more convenient. This can help developers and testers complete the debug 
process better and faster. 

• By building a more complete automated test cluster based on cloud-native tools such as Kubernetes 
and Tracing, AI-driven test environment resource management can be implemented to provide 
more intelligent TaaS (Test as a Service). 

Moreover, current research lacks emphasis on enhancing AI algorithms for testing purposes. There 
remains ample opportunity for further exploration and study in this area, particularly for specific real-
world applications. 

5.2. AI Testing in different fields 

A comparison of research content over time reveals that many scholars and industry professionals 
have increasingly focused on emerging fields and new concepts in recent years. According to statistics, 
over 50% of studies relate to content in these emerging areas. 

In the realm of DevOps, AI's role in testing primarily centers on process optimization and 
improvement. Additionally, new approaches may positively impact AI testing efforts in specific 
scenarios where testing is shifted left or right. 

For Cloud Native environments, current research utilizes cloud native and cloud technologies to 
support AI testing design and implementation. However, there's a notable lack of research on AI 
testing for cloud services themselves. 

Autonomous driving and the Internet of Things have emerged as hot topics in recent years. AI 
software testing in these fields emphasizes safety and stability. Testing in these areas also focuses on 
embedded systems tasks. Unlike traditional computer-based tests, tests on small mobile terminals are 
more performance-oriented. Furthermore, differences in hardware architecture introduce additional 
challenges to testing. 

5.3. Limitations and deficiencies 

Despite extensive efforts to search numerous topic-related databases within the given time constraints, 
some omissions in the search were inevitable. Additionally, space limitations necessitated selecting 
only a small number of publications closely aligned with the research topic during the fine selection 
process. In recent years, AI testing has seen abundant research, though many valuable articles were 
not included in this discussion. Consequently, the inability to analyze a more comprehensive set of 
reference data represents one of this paper's limitations. 

Furthermore, time constraints prevented the verification of experimental validity and authenticity 
for the articles included in this paper's discussion. Many of these studies provide detailed source code 
and data for readers to examine and analyze. Therefore, the inability to reproduce and verify some 
methods represents another limitation of this paper. This aspect of the work can be pursued in the 
future when conditions permit. 

6. Conclusion  

Software testing, a critical component of software engineering, plays a pivotal role in ensuring quality 
throughout the software development lifecycle. As industry evolves, software testing in emerging 
fields faces increasingly complex and diverse challenges. The application of AI methods to optimize 
processes and enhance efficiency offers innovative approaches to software testing and quality 
assurance. 
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This paper reviews and analyzes research papers from the past four years (2021-2024) on this topic, 
summarizing the specific distribution and development trends of research content in this field. It also 
proposes ideas for future research directions and technological development paths.  

In contrast to similar review articles, this paper focuses more on the application and development 
of AI technology in emerging fields. It also analyzes the strengths and weaknesses of specific case 
studies. 

This review offers valuable insights and references for future research. Additionally, the questions 
raised, and areas identified for further research in the analysis and discussion sections can serve as a 
foundation for future work. 
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