

Real-time Recognition of Handwritten Numbers: A LeNet-5

Based Approach and Its Improvements

Zhenhao Liu

University College of London, London, WC1E 6BT, United Kingdom

robliu0122@gmail.com

Abstract. The main idea of this project is to use edge detection to construct the shapes of each

number and segregate each contour into separate images in order to isolate the numbers. Then

feeding the images through a neuro network to perform recognition. Finally, the information is
printed onto a video showing both the paper and boxes, boxing the individual numbers. The

results achieved are fairly accurate, however needs improvements on the accuracy of the number

seven. The goal of this project is to enable the real-time recognition of various handwritten digits

presented on a physical paper medium. This method places no restrictions on the colors of the

paper or pen, as long as the digits remain legible. The dataset employed originates from the

MNIST collection, and the model architecture used closely mirrors that of LeNet-5. The project

is categorized into three main sections: model development, image parameter assessment, and

implementation for real-time video analysis.

Keywords: Neuro network, LeNet-5, Convolutional network, Motion detection, Handwritten

number recognition, Mnist.

1. Introduction

In the digital era, document analysis technologies are becoming increasingly crucial as they serve as a

bridge connecting the physical and digital worlds. Among these, Handwritten Mathematical Expression

Recognition (HMER) stands as a pivotal task whose significance cannot be overstated. Handwritten
mathematical equations, serving as essential conduits for the dissemination and advancement of human

knowledge, permeate numerous fields such as education, scientific inquiry, and the publishing industry.

As online education continues to proliferate, along with the development of intelligent evaluation

systems and digital repositories, the necessity for automated recognition of handwritten mathematical
expressions has become increasingly critical.. Therefore, as a foundational project, the recognition of

numbers is also important as it provides preparation and insight into the field of study. The majority of

recognition projects focusing on handwritten numbers have the limitations of allowing only one number
within the page and white paper with a black pen as an assumed condition. This project challenges to

break these limitations and apply the recognition system to a real time video captured via a camera

connected to the computer. Outputting a window showing the real time video of the paper with the
numbers written on it being boxed in separate boxes, and the numbers indicated in text on the top section

of the video. Although the initial objectives outlined earlier, the initiative can be seamlessly developed

into practical applications such as vehicle license plates or other identification tag recognitions.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

80

2. Model construction and training

A neural network is a computational framework that is derived from the operational principles of the

human brain. [1]. It consists of layers of interconnected nodes that process data through weighted
connections. Each neuron receives input, processes it through an activation function, and passes the

result to the next layer. The network learns by adjusting these weights based on the errors it makes

during training. When constructing models with large inputs such as images, the amount of
computational power needed is often un-obtainable or inefficient for the purpose of use. The resolution

of this issue can be approached through two primary considerations: Firstly, one can minimize the input

data by downscaling the image to a reduced resolution and converting the color scheme from RGB to

grayscale. Secondly, rather than employing fully connected layers, it is recommended to utilize
convolutional networks to derive feature maps prior to the incorporation of any Dense layers. This

project started by taking the first aspect of reducing input data, and then turning to the use of a

convolution network with the aim of improving accuracy.

2.1. First model

This segment employs TensorFlow to establish a fully connected network (FCN) adept at recognizing

individual digits within distinct images. [2]. The model consists of four layers: A flattened layer to
convert the two-dimensional image into a one-dimensional vector, allowing further processing; two

dense layers with 128 units and activation of relu to extract patterns; a single dense layer with 10 units

and activation of SoftMax, matching the 10 integers. The input shape was set to a 28 by 28 grey image

in order to compensate for the issue of having too many pixels to process, reducing the amount of
weights needed to be trained. This is for decreasing the processing time and probability of over-fitting.

After compiling the model together with an optimizer of ‘adam’, loss of sparse categorical cross

entropy, and metrics of accuracy. The model was trained using parts of the data set from mnist [3]. By
viewing the loss graph, an epoch of 15 was chosen, leading to an accuracy of 99% and loss of 0.0098

during the last epoch.

Figure 1. Loss against epochs graph for model

Evaluations on test sets from mnist are also done and the accuracy maintained around 98%. However,
when tests were done on handwritten numbers by me on the ‘paint’ windows application, the accuracy

of recognition on the numbers 4 and 6 were low.

This problem was consistent with the final product of this project, showing possible overfitting. After
attempts of improving the performance by changing hyper-parameters, the structure of the FCN, and the

image pre-processing, the effects were little. Consequently, convolutional networks were introduced to

enhance performance. [4].

2.2. Second model

Convolution neuro networks (CNN), as previously mentioned, possess the capability to decrease the

computational power required while enhancing precision. Central to CNNs are the kernels, often

referred to as filters. A filter is a compact, learnable matrix of weights that traverses the input data and

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

81

executes a convolution operation. The purpose of each filter is to detect specific patterns in the input

data. For example, filters in the first convolutional layer might detect edges, while filters in deeper layers

might detect complex patterns like textures, shapes, or entire objects. A good example is indicated in
Figure2. The table on the left indicates an image with a brighter color on the left than on the right. This

image is convoluted by the filter in the middle, giving the outcome on the right indicating the position

of the vertical edge.

Figure 2. Convolution process using filters [5]

The usage of filters allows spatial features to be determined, capturing relationships between nearby
pixels, which are important in understanding an image. Local connectivity and weight sharing make

CNNs highly efficient. Instead of learning a separate weight for every pixel in the input, CNNs use the

same filter (or kernel) across different regions of the input, reducing the number of parameters and the
possibility of over-fitting. Further on, due to the nature of convolutional operations, CNNs are inherently

translational invariant. A filter applied to one part of an image will detect the same feature in any other

part of the image, enabling the network to detect objects regardless of their position. Making it well-

suited for tasks like image classification.
The CNN used in this project is modified from LeNet-5 [6]. The model consists of 7 layers, not

counting the input, with a combination of convolutional, pooling (subsampling), and fully connected

layers. The input layer is adjusted to 28 by 28 as the image being input from the video is going to be in
this shape, matching the shape of images in the mnist data set. The kernel size of most convolutional

layers was reduced to match the reduction in size of the input image. Using the mnist data set, the

accuracy of 98.9% was gained.

3. Image parameter testing

Image pre-processing and parameter tuning are crucial steps in optimizing machine learning models,

especially in tasks like image recognition and computer vision. Pre-processing techniques, such as

perspective transformation to a bird's-eye view, Gaussian blur, erosion, and dilation, are used to enhance
the quality of input data, reduce noise, and highlight important features of the model. This section tests

the pre-processing parameters. Aiming to find the contour of each number and construct them in separate

images. This results in a set of images that have the correct format and can be fed through the model.
The methodology employed is influenced by a lane detection initiative as well as a project focused on

measuring object dimensions. [7, 8].

The physical set up is shown in Figure3(a), where a camera is pointed to a stack of paper and the

relative positions of these objects are fixed. By manually labeling the vertices of the paper, the region
of interest can be focused and warped to a bird’s eye perspective. Reducing any parallax deformations.

The azure points depicted in Figure 3(b) indicate the vertices of the paper, and by employing functions

from OpenCV , one can derive the transformation matrix. [9]. Then by plotting the image captured, the
transformation matrix, and the target shape of the output image into ‘cv2.warpPerspective’, Figure3(c)

was returned. Providing a more uniform perspective, making it easier for the model to recognize patterns.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

82

Figure 3. (a) Project setup, (b) Image directly captured, (c) Image after perspective transfer

After rotating and mirroring Figure3(c) into the correct orientation, edge detections are performed

on this image. Gaussian Blurring was utilized to reduce noise, and the Canny edge detection algorithm

was implemented to emphasize locations where there are significant changes in the image’s brightness.
[10]. Canny performs non-maximum suppression, which means it identifies and retains only the most

prominent edges, eliminating spurious responses caused by noise or local fluctuations. This ensures that

the edges are thin and precise. Morphological operations, including dilations and erosions, are used to
further reduce noise while connecting disconnected lines. The contours are then recognized and labeled

using ‘cv2.findContours’. Re-organizing the contour labels from left to right, then drawing them onto

the image of the paper.
Utilizing the ‘cv2.minAreaRect’ function, boxes surrounding the numbers are found [9] . Contours

occupying an area of less than 25 pixels were ignored to reduce noise. By using the vertices of these

boxes, new square boxes centering each number are constructed. Using the longest side and diagonal as

the side length of the square. Basing the midpoints between most high and most low vertices as the
vertical centrals, and the midpoint between most left and right as horizontal centrals. A two percent

length of the sides is added to each side of the image in order to further centralize the number. All of the

square boxes constructed will be up right in stead of following the orientation of the minimal area
rectangles. This is because numbers like ‘4’ are often boxed in a 45-degree angle even if the number

was written up right. This results in a limitation in the performance of this project, which is, the numbers

must be written in designed orientation. Otherwise it is likely that the numbers become miss interpretated.

Using the coordinates of square boxes for each number and the information of the contours, multiple
new images centering each individual number can be created. For each number a black based canvas is

constructed, and the number is printed on using filled contours. Due to the thinness of the lines of the

handwritten numbers, the contours are often falsely connected. Resulting in parts of the number being
filled while others are not. To compensate for this issue, a strong dilation followed by multiple erosion

processes was applied. The idea is if the contours are miss connected, the line must be thin. There for

the dilation will fuse the two parallel contours together, and then the erosion will return the number to
its original size as indicated in Figure 4.

Figure 4. Boxed numbers and the reconstructed isolated numbers.

The isolated numbers are then rescaled to 28 by 28 pixels, and the resulting images are indicated on

the right-hand side of Figure4. Each image will then be processed by the model, performing number
recognition. Aiming to produce a real time recognition system, the previous processes were applied to

a live video.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

83

4. Application to video

The identification of handwritten numerals in images represents a significant breakthrough, facilitating

applications such as automated data input, form analysis, and the digitization of notes. However,
recognizing handwritten digits in live video streams has far greater practical applications. For example,

in production line monitoring, instant feedback systems that perform recognition of digits can enable

immediate action and decision-making, improving efficiency and accuracy. This real-time recognition
capability not only increases automation, but also creates new possibilities for scaling solutions in

industries such as banking, and transportation where speed, accuracy, and responsiveness are critical.

By applying the previous sections together on a video, a real-time recognition system can be

constructed. However, running every frame through the model requires a large amount of computational
power, which may lead to noticeable lags of the output video. To resolve this issue, a motion detection

system is applied to the video. Performing a recognition process once, only under the following

conditions: significant fluctuations are detected in the region of interest, and the fluctuations has stopped
for at least 4 seconds. This dramatically reduces the number of frames that will be processed. The

resulting product is shown below in Figure5(a).

Figure 5. Image of video output

The video presents the annotated image featuring the boxed numerical identifiers along with forecasts

regarding their identities when motion is absent in the designated area of interest.. When there is motion,

the real time video of the paper will be shown until the motion is stops for 4 seconds. The predictions

for the numbers are listed in the order of how the handwritten numbers are ordered from left to right.
Tests for numbers in different vertical coordinates are done and shown in Figure5(b).

5. Conclusion

The overall precision is satisfactory; however, it is more prone to failure under two specific conditions..
First, when numbers are positioned too close horizontally but remain tall vertically, overlaps may occur

during the segmentation process, making it difficult to distinguish individual digits. Second, the digit '7'

can sometimes be misinterpreted as '1' if the horizontal bar at the top is too short. This may be caused

by the erosion and dilation process, fusing the bar on the top of ‘7’ to the vertical line. Resulting in a
look that is more similar to ‘1’ than intended.

Other improvements are also preserved. One of which is the maximum number of numbers that can

be displayed is 7 as indicated in Figure5(b). This is due to the size of the window and text. It could be
easily fixed by adding a correlation between the amount of numbers and font size.

This project could be brought further by adding another layer of edge detection, identifying the

position of the paper instead of restricting the position of it to a fixed location. More applications could

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

84

be released with this modification, such as license plate reading or inventory tracking. Eliminating the

need for manual data entry and saving time.

In conclusion, these proposed enhancements not only promise to elevate the current project’s
capabilities but also pave the way for novel and impactful applications in the field of automated data

collection and processing. The future of this technology is promising, with vast opportunities for

exploration and growth.

References

[1] Ng, A. (n.d.). Neural networks and deep learning [Course]. Coursera. https://www.coursera.org/

learn/neural-networks-deep-learning?specialization=deep-learning

[2] TensorFlow. (n.d.). TensorFlow: An end-to-end open-source machine learning platform.
TensorFlow. https://www.tensorflow.org/

[3] LeCun, Y., Cortes, C., & Burges, C. (n.d.). The MNIST database of handwritten digits.

[4] González, R. C. (2008). Digital image processing (3rd ed.). Pearson.
[5] Xu, M. F. (n.d.). Neural networks part 3: Convolutional neural networks (CNN). Michael F. Xu.

[6] Ang, L., Zhou, Y., Shi, J., & Yang, M. (2022). Convolutional neural network-based object

detection for remote sensing images. Journal of Sensors, 2022, Article 1636203.
[7] Wang, X. (n.d.). SEU_LaneDetect [Source code]. GitHub. https://github.com/xlwang123/SEU_

LaneDetect

[8] Rosebrock, A. (2016, March 28). Measuring size of objects in an image with OpenCV.

PyImageSearch.
[9] OpenCV. (n.d.). OpenCV documentation (Version 4.x). OpenCV. https://docs.opencv.org/4.x/

index.html

[10] Canny, J. (1986). A computational approach to edge detection. Pattern Recognition, 19(6), 679-
698. https://doi.org/10.1016/S0031-3203(00)00023-6

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/114/2024.18214

85

