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Abstract. The main idea of this project is to use edge detection to construct the shapes of each 

number and segregate each contour into separate images in order to isolate the numbers. Then 

feeding the images through a neuro network to perform recognition. Finally, the information is 
printed onto a video showing both the paper and boxes, boxing the individual numbers. The 

results achieved are fairly accurate, however needs improvements on the accuracy of the number 

seven. The goal of this project is to enable the real-time recognition of various handwritten digits 

presented on a physical paper medium. This method places no restrictions on the colors of the 

paper or pen, as long as the digits remain legible. The dataset employed originates from the 

MNIST collection, and the model architecture used closely mirrors that of LeNet-5. The project 

is categorized into three main sections: model development, image parameter assessment, and 

implementation for real-time video analysis. 

Keywords: Neuro network, LeNet-5, Convolutional network, Motion detection, Handwritten 

number recognition, Mnist. 

1.  Introduction 

In the digital era, document analysis technologies are becoming increasingly crucial as they serve as a 

bridge connecting the physical and digital worlds. Among these, Handwritten Mathematical Expression 

Recognition (HMER) stands as a pivotal task whose significance cannot be overstated. Handwritten 
mathematical equations, serving as essential conduits for the dissemination and advancement of human 

knowledge, permeate numerous fields such as education, scientific inquiry, and the publishing industry. 

As online education continues to proliferate, along with the development of intelligent evaluation 

systems and digital repositories, the necessity for automated recognition of handwritten mathematical 
expressions has become increasingly critical.. Therefore, as a foundational project, the recognition of 

numbers is also important as it provides preparation and insight into the field of study. The majority of 

recognition projects focusing on handwritten numbers have the limitations of allowing only one number 
within the page and white paper with a black pen as an assumed condition. This project challenges to 

break these limitations and apply the recognition system to a real time video captured via a camera 

connected to the computer. Outputting a window showing the real time video of the paper with the 
numbers written on it being boxed in separate boxes, and the numbers indicated in text on the top section 

of the video. Although the initial objectives outlined earlier, the initiative can be seamlessly developed 

into practical applications such as vehicle license plates or other identification tag recognitions. 
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2.  Model construction and training 

A neural network is a computational framework that is derived from the operational principles of the 

human brain. [1]. It consists of layers of interconnected nodes that process data through weighted 
connections. Each neuron receives input, processes it through an activation function, and passes the 

result to the next layer. The network learns by adjusting these weights based on the errors it makes 

during training. When constructing models with large inputs such as images, the amount of 
computational power needed is often un-obtainable or inefficient for the purpose of use. The resolution 

of this issue can be approached through two primary considerations: Firstly, one can minimize the input 

data by downscaling the image to a reduced resolution and converting the color scheme from RGB to 

grayscale. Secondly, rather than employing fully connected layers, it is recommended to utilize 
convolutional networks to derive feature maps prior to the incorporation of any Dense layers. This 

project started by taking the first aspect of reducing input data, and then turning to the use of a 

convolution network with the aim of improving accuracy. 

2.1.  First model 

This segment employs TensorFlow to establish a fully connected network (FCN) adept at recognizing 

individual digits within distinct images. [2]. The model consists of four layers: A flattened layer to 
convert the two-dimensional image into a one-dimensional vector, allowing further processing; two 

dense layers with 128 units and activation of relu to extract patterns; a single dense layer with 10 units 

and activation of SoftMax, matching the 10 integers. The input shape was set to a 28 by 28 grey image 

in order to compensate for the issue of having too many pixels to process, reducing the amount of 
weights needed to be trained. This is for decreasing the processing time and probability of over-fitting.  

After compiling the model together with an optimizer of ‘adam’, loss of sparse categorical cross 

entropy, and metrics of accuracy. The model was trained using parts of the data set from mnist [3]. By 
viewing the loss graph, an epoch of 15 was chosen, leading to an accuracy of 99% and loss of 0.0098 

during the last epoch. 

 

Figure 1. Loss against epochs graph for model 

Evaluations on test sets from mnist are also done and the accuracy maintained around 98%. However, 
when tests were done on handwritten numbers by me on the ‘paint’ windows application, the accuracy 

of recognition on the numbers 4 and 6 were low.  

This problem was consistent with the final product of this project, showing possible overfitting. After 
attempts of improving the performance by changing hyper-parameters, the structure of the FCN, and the 

image pre-processing, the effects were little. Consequently, convolutional networks were introduced to 

enhance performance. [4].  

2.2.  Second model 

Convolution neuro networks (CNN), as previously mentioned, possess the capability to decrease the 

computational power required while enhancing precision. Central to CNNs are the kernels, often 

referred to as filters. A filter is a compact, learnable matrix of weights that traverses the input data and 
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executes a convolution operation. The purpose of each filter is to detect specific patterns in the input 

data. For example, filters in the first convolutional layer might detect edges, while filters in deeper layers 

might detect complex patterns like textures, shapes, or entire objects. A good example is indicated in 
Figure2. The table on the left indicates an image with a brighter color on the left than on the right. This 

image is convoluted by the filter in the middle, giving the outcome on the right indicating the position 

of the vertical edge.  

 

Figure 2. Convolution process using filters [5] 

The usage of filters allows spatial features to be determined, capturing relationships between nearby 
pixels, which are important in understanding an image. Local connectivity and weight sharing make 

CNNs highly efficient. Instead of learning a separate weight for every pixel in the input, CNNs use the 

same filter (or kernel) across different regions of the input, reducing the number of parameters and the 
possibility of over-fitting. Further on, due to the nature of convolutional operations, CNNs are inherently 

translational invariant. A filter applied to one part of an image will detect the same feature in any other 

part of the image, enabling the network to detect objects regardless of their position. Making it well-

suited for tasks like image classification. 
The CNN used in this project is modified from LeNet-5 [6]. The model consists of 7 layers, not 

counting the input, with a combination of convolutional, pooling (subsampling), and fully connected 

layers. The input layer is adjusted to 28 by 28 as the image being input from the video is going to be in 
this shape, matching the shape of images in the mnist data set. The kernel size of most convolutional 

layers was reduced to match the reduction in size of the input image. Using the mnist data set, the 

accuracy of 98.9% was gained. 

3.  Image parameter testing 

Image pre-processing and parameter tuning are crucial steps in optimizing machine learning models, 

especially in tasks like image recognition and computer vision. Pre-processing techniques, such as 

perspective transformation to a bird's-eye view, Gaussian blur, erosion, and dilation, are used to enhance 
the quality of input data, reduce noise, and highlight important features of the model. This section tests 

the pre-processing parameters. Aiming to find the contour of each number and construct them in separate 

images. This results in a set of images that have the correct format and can be fed through the model. 
The methodology employed is influenced by a lane detection initiative as well as a project focused on 

measuring object dimensions. [7, 8]. 

The physical set up is shown in Figure3(a), where a camera is pointed to a stack of paper and the 

relative positions of these objects are fixed. By manually labeling the vertices of the paper, the region 
of interest can be focused and warped to a bird’s eye perspective. Reducing any parallax deformations. 

The azure points depicted in Figure 3(b) indicate the vertices of the paper, and by employing functions 

from OpenCV , one can derive the transformation matrix. [9]. Then by plotting the image captured, the 
transformation matrix, and the target shape of the output image into ‘cv2.warpPerspective’, Figure3(c) 

was returned. Providing a more uniform perspective, making it easier for the model to recognize patterns. 
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Figure 3. (a) Project setup, (b) Image directly captured, (c) Image after perspective transfer 

After rotating and mirroring Figure3(c) into the correct orientation, edge detections are performed 

on this image. Gaussian Blurring was utilized to reduce noise, and the Canny edge detection algorithm 

was implemented to emphasize locations where there are significant changes in the image’s brightness. 
[10]. Canny performs non-maximum suppression, which means it identifies and retains only the most 

prominent edges, eliminating spurious responses caused by noise or local fluctuations. This ensures that 

the edges are thin and precise. Morphological operations, including dilations and erosions, are used to 
further reduce noise while connecting disconnected lines. The contours are then recognized and labeled 

using ‘cv2.findContours’. Re-organizing the contour labels from left to right, then drawing them onto 

the image of the paper.  
Utilizing the ‘cv2.minAreaRect’ function, boxes surrounding the numbers are found [9] . Contours 

occupying an area of less than 25 pixels were ignored to reduce noise. By using the vertices of these 

boxes, new square boxes centering each number are constructed. Using the longest side and diagonal as 

the side length of the square. Basing the midpoints between most high and most low vertices as the 
vertical centrals, and the midpoint between most left and right as horizontal centrals. A two percent 

length of the sides is added to each side of the image in order to further centralize the number. All of the 

square boxes constructed will be up right in stead of following the orientation of the minimal area 
rectangles. This is because numbers like ‘4’ are often boxed in a 45-degree angle even if the number 

was written up right. This results in a limitation in the performance of this project, which is, the numbers 

must be written in designed orientation. Otherwise it is likely that the numbers become miss interpretated.  

Using the coordinates of square boxes for each number and the information of the contours, multiple 
new images centering each individual number can be created. For each number a black based canvas is 

constructed, and the number is printed on using filled contours. Due to the thinness of the lines of the 

handwritten numbers, the contours are often falsely connected. Resulting in parts of the number being 
filled while others are not. To compensate for this issue, a strong dilation followed by multiple erosion 

processes was applied. The idea is if the contours are miss connected, the line must be thin. There for 

the dilation will fuse the two parallel contours together, and then the erosion will return the number to 
its original size as indicated in Figure 4. 

 

Figure 4. Boxed numbers and the reconstructed isolated numbers. 

The isolated numbers are then rescaled to 28 by 28 pixels, and the resulting images are indicated on 

the right-hand side of Figure4. Each image will then be processed by the model, performing number 
recognition. Aiming to produce a real time recognition system, the previous processes were applied to 

a live video. 
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4.  Application to video 

The identification of handwritten numerals in images represents a significant breakthrough, facilitating 

applications such as automated data input, form analysis, and the digitization of notes. However, 
recognizing handwritten digits in live video streams has far greater practical applications. For example, 

in production line monitoring, instant feedback systems that perform recognition of digits can enable 

immediate action and decision-making, improving efficiency and accuracy. This real-time recognition 
capability not only increases automation, but also creates new possibilities for scaling solutions in 

industries such as banking, and transportation where speed, accuracy, and responsiveness are critical. 

By applying the previous sections together on a video, a real-time recognition system can be 

constructed. However, running every frame through the model requires a large amount of computational 
power, which may lead to noticeable lags of the output video. To resolve this issue, a motion detection 

system is applied to the video. Performing a recognition process once, only under the following 

conditions: significant fluctuations are detected in the region of interest, and the fluctuations has stopped 
for at least 4 seconds. This dramatically reduces the number of frames that will be processed. The 

resulting product is shown below in Figure5(a). 

 

Figure 5. Image of video output 

The video presents the annotated image featuring the boxed numerical identifiers along with forecasts 

regarding their identities when motion is absent in the designated area of interest.. When there is motion, 

the real time video of the paper will be shown until the motion is stops for 4 seconds. The predictions 

for the numbers are listed in the order of how the handwritten numbers are ordered from left to right. 
Tests for numbers in different vertical coordinates are done and shown in Figure5(b).  

5.  Conclusion 

The overall precision is satisfactory; however, it is more prone to failure under two specific conditions.. 
First, when numbers are positioned too close horizontally but remain tall vertically, overlaps may occur 

during the segmentation process, making it difficult to distinguish individual digits. Second, the digit '7' 

can sometimes be misinterpreted as '1' if the horizontal bar at the top is too short. This may be caused 

by the erosion and dilation process, fusing the bar on the top of ‘7’ to the vertical line. Resulting in a 
look that is more similar to ‘1’ than intended. 

Other improvements are also preserved. One of which is the maximum number of numbers that can 

be displayed is 7 as indicated in Figure5(b). This is due to the size of the window and text. It could be 
easily fixed by adding a correlation between the amount of numbers and font size. 

This project could be brought further by adding another layer of edge detection, identifying the 

position of the paper instead of restricting the position of it to a fixed location. More applications could 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/114/2024.18214 

84 



 

 

be released with this modification, such as license plate reading or inventory tracking. Eliminating the 

need for manual data entry and saving time. 

In conclusion, these proposed enhancements not only promise to elevate the current project’s 
capabilities but also pave the way for novel and impactful applications in the field of automated data 

collection and processing. The future of this technology is promising, with vast opportunities for 

exploration and growth. 
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