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Abstract. Since the 1950s, language modeling (Language Models, LMs) has been one of the 
primary approaches for tasks such as machine translation, as well as language understanding and 

processing. It has been widely applied in the field of natural language processing (Natural 

Language Processing, NLP), significantly improving the performance of tasks related to natural 

language understanding and generation. In recent years, large language models (LLMs) have 

made remarkable advancements in technical architecture and model scale, providing strong 

technological support for NLP and other fields. This paper presents a comprehensive review of 

the technological architecture and the development of the scale of large language models (LLMs), 

and delves deeply into the challenges these developments pose, along with the current strategies 

to address them. Finally, the paper summarizes and offers a prospective outlook on the future 

development directions of LLMs in terms of scale, providing insights and inspiration for the 

future development, training, and application of LLMs. 
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1.  Introduction 
As early as the 1950s, scientists began attempting to simulate the process of human language 

understanding to study linguistic rules, leading to the emergence of language models. With the 

advancement of computational power, expansion of datasets, and development of deep learning 
technologies, the strong predictive capabilities of neural networks aligned well with the discrete, high-

dimensional nature of NLP, enabling language models to evolve from purely statistical models to neural 

network models. This marked a significant breakthrough in the field of NLP. 

Unlike Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), the 
Transformer model[1], which introduced the attention mechanism, demonstrated exceptional 

performance in NLP tasks such as machine translation. In recent years, numerous pre-trained language 

models (PLMs) based on the Transformer architecture have emerged, such as the GPT series. The 
architectures of PLMs have become increasingly complex, and the number of model parameters has 

surged from 1 billion to the scale of hundreds of billions. Research indicates that there is a positive 

correlation between the scale of PLMs and their performance[2]. As the number of parameters grows 
exponentially, the models exhibit significant improvements in performance, understanding ability, and 

generalization capabilities. 
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However, the continuous expansion of model scale has introduced challenges such as insufficient 

computational resources, decreased inference efficiency, overfitting, and memory limitations. At the 

current stage, the increasing computational demands and training costs have become significant barriers 

to further enhancing model performance. To address these issues, numerous studies have focused on 
optimizing or compressing model architectures without compromising performance. Techniques such 

as knowledge distillation and quantization have been explored, along with methods to improve inference 

speed. 
In the future, large language models will not be limited to text understanding and generation but will 

integrate with multimodal learning and multitask learning, extending their application to embodied 

agents. The computational demands of these models will continue to grow. To address the future 

opportunities and challenges of large language models, it is essential to thoroughly consider the 
development of model scale and its associated challenges. In this context, this paper first provides a 

brief overview of the development of LLMs’ technical architecture and summarizes the evolution of 

model scale both domestically and internationally, discussing the relationship between model scale and 
performance. Next, it examines the challenges posed by expanding model scale. Subsequently, the paper 

elaborates on current technical research addressing these challenges. Finally, it offers an outlook on the 

future development of LLMs in terms of scale. 

2.  LLMs Technical Architecture 

In 2017, Google innovatively introduced a feature extractor, Transformer[1], which incorporated the 

attention mechanism, breaking through the bottleneck of using RNNs and other neural networks for 

NLP tasks. The attention mechanism introduced in the Transformer architecture employs three feature 
vectors: Q (Query), K (Key), and V (Value). It calculates the attention weights for V by aggregating the 

attention between Q and K. Since its introduction, Transformer has become the foundational building 

block for nearly all LLMs today. 
Large language models (LLMs) refer to language models pre-trained on massive amounts of textual 

data, capable of generating human-like text, answering questions, and completing other NLP tasks with 

high accuracy. To achieve this level of performance, LLMs are trained on text corpora containing 

hundreds of billions of tokens sourced from books, web pages, and other materials, forming pre-trained 
models. These models are further refined through instruction tuning, reward functions, and 

reinforcement learning-based alignment techniques to optimize their performance. 

Currently, the mainstream architectures of LLMs can be categorized into three types: Encoder-only, 
Decoder-only, and Encoder-decoder. All three frameworks use unsupervised learning methods to 

perform predictive learning on datasets to improve performance. However, each framework focuses on 

different NLP tasks based on the specific unsupervised learning approach employed, resulting in the 
development of various LLMs based on these distinct architectures. 

3.  LLMs Model Scale 

3.1.  Development of Model Scale 

Research indicates that the expansion of LLMs' model scale generally enhances model performance. 
Increased parameter counts enable the model to capture more textual features, thereby improving its 

comprehension and generalization abilities, which in turn leads to better performance across various 

tasks. Reviewing the development trajectory of LLMs, all models have scaled up during iterations, with 
parameter counts growing exponentially. Table 1 summarizes the parameter count evolution of large 

language models (LLMs) both domestically and internationally in recent years. 

3.1.1.  Development of International Models 
In 2018, OpenAI introduced the GPT-1[3], a large language model based on the Transformer 

architecture and a Decoder-only framework. GPT-1 utilized unsupervised generative pretraining 

combined with supervised fine-tuning to tackle single-sequence text generation tasks, such as language 
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inference and question answering. During unsupervised pretraining, GPT-1 stacked 12 Transformer 

layers, expanded the feedforward hidden layer to 3072 dimensions, and achieved a total parameter count 

of 117 million. Starting with GPT-2[4], the model abandoned supervised fine-tuning, expanded training 

data and network layers, and leveraged contextual learning capabilities to achieve full coverage of 
supervised learning tasks, overcoming GPT-1's limitations in language understanding and generation. 

GPT-2 increased the number of Transformer layers to 48 and the hidden layer dimensions to 1600, with 

parameters growing from 117 million to 1.5 billion. In the subsequent version, GPT-3[5], the parameter 
count surged to 175 billion, and the number of Transformer layers further increased to 96. It is estimated 

that the latest large language model, GPT-4[6], released in 2023, has parameter counts in the trillion 

range. With its massive scale, GPT-4 demonstrates powerful performance in text and multimodal tasks. 

In the same year as GPT-1, Google released BERT[7], a bidirectional Transformer language model 
based on the Encoder-only framework. BERT had 24 Transformer layers and 340 million parameters. 

By 2022, Google had successively introduced LLMs with increasing parameter counts, including 

LaMDA[8], a dialogue-focused model with 137 billion parameters, and the ultra-large-scale PaLM[9], 
which reached 540 billion parameters. 

The LLaMA[10] series, developed by Meta AI and released in 2023, improved performance over 

contemporary LLMs by expanding training data. The LLaMA series includes versions with parameter 
counts ranging from 7 billion to 65 billion, with the updated LLaMA2 increasing the maximum 

parameter count to 70 billion. 

3.1.2.  Development of Domestic Models 

With the rapid growth of artificial intelligence, domestic institutions in China have kept pace by 
developing large language models tailored to the Chinese linguistic context, striving to achieve 

performance on par with international standards. The widespread adoption of ChatGPT in 2023 spurred 

explosive growth in the development of domestic LLMs. As of July 2023, China had released 130 large 
language models[11]. Among these, Baidu's early version of "Wenxin Yiyan" (Ernie Bot) featured 250 

billion parameters, with 85% of its training corpus in Chinese. Alibaba's "Tongyi Qianwen" series 

included models with parameter counts ranging from 7 billion to 70 billion, equivalent to GPT-3 in 

overall scale. This demonstrates that the scale of domestic LLMs is now comparable to that of 
international counterparts. 

Table1. Comparison of Parameter Counts in Recent Domestic and International LLMs 

models Release time developers Parameters/108 

GPT 2018 OpenAI 1.17 

BERT 2018 Google 3.40 

GPT-2 2019 OpenAI 15.00 

GPT-3 2020 OpenAI 1750.00 

GLaM 2021 Google 1200.00 

LaMDA 2022 Google 1370.00 

PaLM 2022 Google 5400.00 

LLaMA 2023 MetaAI 70.00-650.00 

LLaMA2 2023 MetaAI 70.00-700.00 

GPT-4 2023 OpenAI — 

ERNIE Bot 2023 Baidu 2500.00 

Tongyi.ai 2023 Ali 70.00-700.00 

Baichuan 2023 Baichuan AI 70.00 
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3.2.  Model Scale and Model Performance 

The relationship between model scale and model performance is complex and multifaceted. Research 

has revealed the phenomenon of emergent abilities[12], which refers to unique capabilities that do not 

exist in smaller models but emerge as the model scale increases. These abilities cannot be predicted by 
analyzing the limitations of smaller models. For instance, the few-shot prompting capability, extensively 

used in GPT-3, can only function effectively in sufficiently large models, allowing them to answer 

questions correctly using prompts without additional pretraining. While the expansion of model scale is 
a key condition for the emergence of such abilities, the underlying mechanisms remain unexplained. 

Investigating how emergent abilities arise and whether future expansions in model scale will lead to new 

capabilities provides a fresh perspective on enhancing model performance, representing a significant 

research direction in NLP. 
Additionally, model performance exhibits a nonlinear relationship with key model parameters such 

as model scale, training data size, and computation amount, described as power law scaling[13]. This 

relationship indicates that during model pretraining, the loss L tends to decay in a power law pattern 
relative to resources like the number of parameters (N), the number of training samples (P), and the 

computational budget (C). By observing and analyzing this power law relationship, researchers can 

effectively adjust parameters, training data, and other resources to guide model design and training, 
achieving optimal performance within available resources. For example, during model pretraining, 

increasing the parameter count by two orders of magnitude may only reduce the loss by 0.5 points[13]. 

In such cases, developers should explore alternative methods to improve model performance rather than 

continuously scaling up the model. 

4.  Challenges Brought by Model Development 

In recent years, the continuous expansion of LLMs has led to models like GPT-4 reaching parameter 

counts in the trillions. While this demonstrates that increasing model scale significantly enhances model 
performance, it also introduces a range of challenges that need to be addressed when scaling models 

indefinitely. 

4.1.  Dramatic Increase in Training Costs 

From pretraining LLMs to subsequent inference processes, significant computational resources are 
required. The increase in parameters and training data further amplifies the demand for computational 

power. Figure 1 illustrates the evolution of parameter counts and computational requirements for various 

major models[14]. 
Taking GPT-3 as a reference, a single training run for GPT-3 requires approximately 1.75*1023 

floating-point operations. Research indicates that during usage, ChatGPT consumes about 4874.4 

PFlop/s-day[11]. Under such immense computational demands, both the training time and associated 
costs have grown exponentially compared to earlier models. 

 

Figure 1. Model Parameter Counts and Computational Requirements 

4.2.  Decline in Inference Speed 

As model scale continues to expand, training increasingly occupies large amounts of GPU memory. This 
reduces the model's ability to efficiently capture data features, resulting in slower inference speeds and 

hindering the model’s ability to deeply understand the characteristics of the training data. 
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4.3.  Overfitting 

The increase in parameter counts in LLMs enhances the model's ability to understand training datasets. 

However, excessive model scale can lead to over-reliance on training data, causing overfitting and a 

decline in generalization capability. Overfitting can result in risks such as reduced data authenticity and 
biases[15], which impact the fairness of model outputs. Preventing overfitting is a critical concern during 

the model training process and requires particular attention. 

5.  Technical Advances Addressing Challenges 
Since the rapid development of large language models (LLMs), numerous technological approaches 

have emerged to maintain model performance while managing training costs and improving inference 

speed. These efforts have achieved significant progress. Below are the key existing techniques and 

innovations addressing training cost and inference speed challenges. 

5.1.  Mixture of Experts Training 

The core idea of Mixture of Experts (MoE) training is to enhance model performance by decomposing 

tasks and utilizing multiple expert networks to process relevant data separately. MoE, essentially a 
Transformer model, increases the model’s "sparsity," allowing for faster training speeds while requiring 

fewer computational resources. For instance, Google’s multimodal large language model Gemini 1.5 

employs the MoE framework to distribute task requests to smaller "expert" neural networks, thereby 
improving response speed. However, MoE faces the challenge of parameter inefficiency. This is due to 

the independence of different layers in the model, which fails to leverage historical information during 

training. Recent research by Qiu et al. on RmoE[16] introduces the concept of inter-layer routing 

decision dependencies. By using GRUs (Gated Recurrent Units) to connect consecutive layers, RmoE 
achieves efficient parallel computation and addresses the issue of parameter redundancy. 

5.2.  Quantization 

Model quantization focuses on converting floating-point parameters into integers to reduce 
computational demands. This approach decreases memory usage, lowers power consumption, and 

enhances inference speed on hardware optimized for integer computation, effectively addressing 

challenges arising from model scaling. For LLMs, two primary quantization methods are currently 

prevalent: coarse-grained quantization and fine-grained quantization. The former quantizes the entire 
tensor or along a specific dimension, while the latter slices a dimension into multiple parts and quantizes 

each slice individually. 

From an application perspective, post-training quantization is widely used to reduce model storage 
and computational complexity. Post-training quantization compresses computational demands by 

quantizing model weights, often employing fine-grained quantization methods without requiring 

calibration datasets or altering the model architecture. Additionally, post-training quantization can 
quantize activation values within the model. Recent research has extensively explored methods to 

minimize quantization errors and determine the required precision for models. For example, Zhang et 

al. proposed DGQ (Dual Grained Quantization)[17], which addresses the inefficiency of fine-grained 

quantization due to disrupted continuous matrix multiplications. DGQ adopts an A8W4 quantization 
strategy (using INT8 for activations and INT4 for weights) and performs matrix multiplication through 

an INT8 kernel, thereby improving inference efficiency. 

5.3.  Knowledge Distillation 
Knowledge distillation is primarily used for large language models (LLMs) that require substantial 

computational resources and cannot operate on devices with limited capabilities, such as mobile devices. 

This technique follows a "teacher-student" model, where a larger, higher-performing "teacher" model 
transfers knowledge to a simpler "student" model. The goal is to enable the "student" model to replicate 

the "teacher" model's capabilities within limited computational resources while enhancing the student's 

generalization abilities. 
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In recent years, knowledge distillation has made significant advancements and has been widely 

applied in fields like computer vision and natural language processing. The approach has evolved from 

initial output distillation to feature distillation and relational distillation, which delve deeper into the 

internal relationships and training processes of the "teacher" model. However, the technique still exhibits 
shortcomings in some applications. Research by Agarwal et al.[18] highlights a distribution mismatch 

between the sequences output by the "teacher" and those generated by the "student" during training in 

autoregressive sequence models. To address this, the study introduced Generalized Knowledge 
Distillation (GKD), which allows the "student" model to learn from its self-generated output sequences 

while leveraging feedback from the "teacher" model to enhance performance. 

5.4.  Pruning 

Pruning, as its name suggests, refers to the removal of neurons or connections below a certain threshold 
to increase the sparsity of a model. The primary aim is to reduce the size, complexity, and computational 

demands of the model, while simultaneously improving inference speed and reducing energy 

consumption. In the domain of compressing large language models (LLMs), pruning techniques are 
generally classified into two categories: structured pruning and unstructured pruning. Structured Pruning: 

This method involves pruning specific structures, such as neurons, channels, or layers, while 

maintaining the overall architecture of the model. This ensures compatibility with hardware acceleration, 
making it practical for implementation. Unstructured Pruning: In contrast, this method independently 

removes individual parameters without adhering to the model’s predefined structure. While it achieves 

a high compression ratio, it cannot leverage existing hardware architectures for acceleration, limiting its 

practicality. Although pruning effectively improves inference speed and reduces model size, it often 
results in some degree of performance degradation, adhering to the power law scaling principle. To 

address this limitation, Sorscher et al.[13] introduced data pruning, which breaks the constraints of the 

power law scaling principle. The study focuses on identifying optimal data pruning metrics to determine 
the order in which training samples are discarded. By carefully selecting the pruned dataset size, the 

method achieves exponential scalability while maintaining robust performance. 

6.  Conclusion 

To enhance model performance, the parameter count of LLMs has grown rapidly, following the power 
law scaling principle. As of now, LLMs have reached parameter counts in the trillion range, nearing 

saturation in their applications. Continuing to scale up model parameters for optimization requires 

immense computational resources and significant training costs, while also introducing challenges such 
as slower inference speeds and potential ethical concerns. To address the challenges posed by excessive 

model scale, techniques such as pruning, knowledge distillation, quantization, and other model 

optimization approaches like Mixture of Experts (MoE) have been developed. These techniques aim to 
effectively mitigate issues such as high training costs. However, each of these methods still faces various 

limitations in practical application, necessitating further research in the future. 

LLMs are continually evolving, unlocking more capabilities. In the future, balancing model scale 

and performance will remain a critical area of research, reflected in two key aspects: 
(1) At present, LLMs primarily serve as foundational models focused on language-related tasks. 

However, integrating LLMs with multimodal, multitask, and cross-domain capabilities to broaden their 

application scope is an inevitable trend. In this context, model scale will need to expand to improve 
multimodal integration and comprehension capabilities across different modalities. Developing methods 

to compress model scale and reduce computational demands under these conditions will be a key focus 

for future research. 
(2) Driven by the vision of using LLMs to interact with real-world environments, developing agents 

based on LLMs has become a prominent direction in artificial intelligence. These agents can operate in 

virtual environments, such as mobile devices or computer web pages, utilizing the powerful reasoning 

capabilities of LLMs to perform tasks like online shopping or sending emails. However, due to device 
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limitations, the LLMs employed in such agents must undergo structural optimization, continuously 

seeking a balance between scale and performance. 
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