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Abstract: In recent years, large language models (LLMs) have demonstrated remarkable 

capabilities in the field of code generation. However, existing research has primarily focused 

on algorithmic problem-solving code generation, with limited attention to the ability to 

generate framework code used in actual software development. Programming frameworks 

are vital tools in software development, effectively reducing development time and enhancing 

code compatibility. This paper takes the Qt framework in C++ as an example to 

systematically evaluate ChatGPT’s performance in code generation at different levels of 

granularity (project-level, class-level, and function-level). To this end, we designed a test 

dataset (comprising 10 code generation projects of varying complexity) to assess the model’s 

performance in terms of correctness, robustness, and user experience. In this process, we 

employed prompt engineering methods to ensure fair conversion. The experimental results 

show that while ChatGPT is capable of generating functional code in most cases, its 

performance in correctness, robustness, and user experience decreases as task complexity and 

code granularity increase. Nonetheless, with manual intervention or more detailed prompts, 

these issues can be largely resolved. Overall, ChatGPT shows potential in framework code 

generation, particularly for small to medium-sized tasks. This study reveals both the potential 

and limitations of LLMs in framework development, providing valuable insights for future 

improvements and applications. 
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1. Introduction 

Nowadays, artificial intelligence, particularly large language models (LLMs), has demonstrated 

remarkable capabilities and potential in various fields. Leveraging the Transformer architecture, they 

have achieved near-human performance in natural language processing [1-2]. Among these fields, 

programming has emerged as one of the most prominent directions, showing rapid progress. With the 

help of LLMs, users can interact through natural language conversations and obtain the desired 

content. Currently, mainstream LLMs (such as ChatGPT) have achieved outstanding results in 

solving programming problems of varying complexity and across diverse application scenarios. 

When problems are described in natural language, LLMs can comprehend the essence of 

programming issues and exhibit strong generalization capabilities, allowing them to handle tasks 

beyond their training data [3-5]. These developments provide significant support and assistance to 

developers. 
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In actual project development, developers typically use programming frameworks rather than 

directly coding in programming languages. Programming frameworks provide developers with a 

predefined platform that offers a standardized structure and a toolkit. The use of programming 

frameworks can significantly improve development efficiency, code quality, and project 

maintainability, effectively reducing development cycles and enhancing code compatibility [6]. 

Programming frameworks play a crucial role in practical applications. 

At present, research on the code generation capabilities of LLMs has primarily focused on their 

ability to solve algorithmic problems, assessing aspects such as correctness, complexity, and security 

[3-5][7-9]. While these algorithmic tasks have clear goals and the generated code is relatively 

straightforward, such studies have limited applicability to real-world software development. For 

developers, the use of programming frameworks is a key factor affecting development efficiency, 

compatibility, and collaboration, making it an essential component of project development. Therefore, 

evaluating LLMs’ ability to generate code within programming frameworks is a necessary step 

toward transitioning cutting-edge technology into practical applications, addressing an urgent need 

for project developers. 

This paper systematically investigates and analyzes the performance of large models in the task of 

generating Qt framework code in C++. First, existing research on code generation largely focuses on 

achieving specific and singular functionalities, with little exploration of the value of LLMs in real 

development applications [3-5]. Second, we selected 10 representative framework programming tasks 

from different perspectives and levels of difficulty, conducting code generation and conversion 

according to different levels of code granularity (function, interface, and overall project). Different 

levels of code granularity correspond to varying degrees of developer involvement relative to the 

output of large models. As the granularity decreases, the level of developer participation increases. 

By employing this approach, we can evaluate the generation performance of large models under 

varying degrees of involvement. During this process, we used identical prompts to ensure the fairness 

of the generated results (which needs to be elaborated). Subsequently, we tested the functionality and 

quality of the generated code to assess its effectiveness at different levels of granularity. 

The experiments demonstrate that large model systems, such as ChatGPT, are generally effective 

in generating framework code. At different levels of granularity, they can essentially produce the 

required code. However, as the granularity increases, the proportion and number of syntax errors in 

the code also increase. Nevertheless, after manual modifications or additional prompts, the models 

can typically meet the required functionality in a more complete manner. 

2. Background 

2.1. LLM and ChatGPT   

Large models represent the most advanced technologies in the field of artificial intelligence today. 

They are highly complex neural network models built on deep learning and natural language 

processing technologies [10]. ChatGPT, as one of the representative products of these models, is 

renowned for its powerful language understanding and generation capabilities [2]. 

ChatGPT’s ability to comprehend and generate human language stems from its training process. 

It is trained on vast amounts of textual data, allowing it to learn the complex relationships between 

syntax, semantics, and context, enabling it to effectively process and generate natural language text. 

This capability has shown significant potential and practicality across various application scenarios. 

In practical applications, large models like ChatGPT can be used for numerous tasks and industries. 

In the field of natural language processing, they can be applied to tasks such as text generation, 

machine translation, sentiment analysis, and intelligent customer service [1-2][11-12]. For example, 

ChatGPT can serve as an intelligent assistant or virtual customer service system, capable of 
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understanding users’ questions and providing corresponding answers and solutions, thus improving 

user experience and service efficiency. In the medical field, these models can assist doctors in 

diagnostic reasoning and suggesting treatment plans, help increase research writing efficiency, and 

accelerate drug development [13]. In the legal sector, they can assist lawyers in drafting legal 

documents and offering legal advice [14]. Additionally, large models can also undertake tasks in 

software development, such as code generation, code analysis, and code testing [3-5][15]. 

2.2. Survey on Framework-level Code Generation   

Current research on the code generation capabilities of LLMs mainly focuses on their ability to solve 

algorithmic problems, limiting the tasks to relatively simple and well-defined code generation. For 

instance, D. Yan et al.[5,7] conducted empirical studies using large datasets to evaluate the 

correctness and quality of generated code, such as the algorithm code generation on the LeetCode 

platform. R. Khoury et al.[16] generated 21 programs in different programming languages and 

prompted ChatGPT to identify and fix security vulnerabilities in the code, assessing the security of 

the generated code. D. Justin et al. [17-18] compared human-translated code with AI-translated code 

to evaluate ChatGPT’s potential in code translation. 

However, such work does not consider the direct generation of framework code, such as Qt, using 

large models, nor does it examine code generation performance across different levels of granularity 

and perspectives. As a result, the evaluations tend to be incomplete and vague, providing insufficient 

insight into the practical application of these models. 

3. Approach 

3.1. Programming Tasks 

 

Figure 1: Workflow of LLM-based Code Framework Transformation. 

In the experiment, We used prompt engineering [19-20] to break down complex programming tasks 

into specific prompts that are easier for ChatGPT to understand and handle, improving its 
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comprehension and execution of tasks. We divided the programming tasks into three levels: the 

overall project level, the class level, and the function level. 

As we gradually refined and decomposed the entire project, ChatGPT’s involvement in project 

development decreased, while the developer’s participation increased. Finally, we independently 

evaluated the results at each level, assessing their performance in the following areas: code 

correctness, robustness of exception handling, and user experience. These evaluations allow us to 

comprehensively measure the impact of prompt engineering at different levels on the quality of 

project development. 

3.2. Prompt Engineering 

To generate the framework code fairly and comprehensively, we have designed specialized prompt 

templates from different levels as follows. 

3.2.1. Overall Project 

You are a software developer. Please use the Qt framework and C++ language to write a restaurant 

management system program. The program must allow administrator login and user login, storing 

information in `.dat` files. Different login identities should enable different functionalities. The 

program needs to manage four `.dat` files: administrator information, user information, dish 

information, and feedback information. Administrator information should include account and 

password; user information should include name, account, and password; dish information should 

include dish name, ingredients, supply location, and price; feedback information should include dish 

name and feedback content. When logged in as an administrator, the program should have functions 

such as adding administrators, deleting administrators, modifying administrator passwords, adding 

dish information, deleting dish information, viewing dish feedback, adding users, and deleting users. 

When logged in as a user, the program should allow viewing dish information and providing dish 

feedback. 

3.2.2. Class Level 

You are a software developer. Please use the Qt framework and C++ language to create a visual 

restaurant management system. Follow my guidance step by step to complete the project.   

We need you to generate the user interfaces one by one. First, create the main interface that 

implements administrator login and user login. Different login identities should redirect to different 

interfaces to enable various functionalities. Administrator information should include account and 

password; user information should include name, account, and password. Store the information in 

two `.dat` files. The generated code should include all necessary files, including the UI files.   

Now implement the administrator functionality. When logged in as an administrator, the system 

should provide functions such as adding administrators, deleting administrators, modifying 

administrator passwords, adding dish information, deleting dish information, viewing dish feedback, 

adding users, and deleting users. Dish information should include dish name, ingredients, supply 

location, and price. Feedback information should include dish name and feedback content. Store the 

information in `.dat` files. All functionalities should be integrated into a single interface.   

Now complete the user functionality. When logged in as a user, the system should allow viewing 

dish information and providing feedback on dishes. 
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3.2.3. Function Level 

You are a software developer. Please use the Qt framework and C++ language to create a visual 

restaurant management system. Follow my guidance step by step to complete the project.   

Write a slot function for the interface class that completes all the following functionalities. 

[Specific function details]   

(For example: “Read administrator data from `admins.dat` file. Administrator information should 

include account and password. Compare with the `lineEdit` (account) and `lineEdit_2` (password) 

fields in the UI file. If the login is successful, leave a redirect interface; if it fails, display an error 

message.”) 

3.3. Multi-level Object Design 

At the overall project level, we provide ChatGPT with a detailed and comprehensive description, 

covering all functional requirements of the project. The goal is to enable ChatGPT to fully understand 

and independently complete the development of the entire project. The prompts at this level are 

usually long and require ChatGPT to generate complete code or scripts. 

At the class level, we further break down the overall functionality of the project into separate 

interface modules. Each module represents a specific part of the project’s functionality. We provide 

ChatGPT with a description of the specific functionalities required for each interface, and it generates 

the corresponding code. At this stage, the developer’s involvement starts to increase, as they are 

responsible for integrating the individual interface codes into the project. 

At the function level, we further refine each interface’s functionality into multiple specific 

functions. Each function corresponds to a particular sub-functionality. We provide ChatGPT with 

detailed descriptions of each function, asking it to generate the code that implements the required 

functionality. The prompts at this level are usually shorter and more specific, and the developer’s 

involvement increases significantly, as they are responsible for integrating the functions into the 

interface and further optimizing the code. 

4. Evaluation 

4.1. Datasets 

In this study, I designed a series of datasets to evaluate and test the code generation capabilities of 

large language models (LLMs) under the Qt framework. These datasets include 10 framework code 

generation projects with varying levels of complexity. 

Table 1: Evaluation System Requirement Dataset. 

System Requirement Name 

Calculator To-do List 

Simple Database Management System Restaurant Management System 

Personal Finance Management System Vehicle Rental System 

Online Examination System Inventory Management System 

Project Management System Library Management System 

 

Each project is further divided into different code granularity levels to simulate the various levels 

and requirements of actual software development. The code granularity division aims to cover all 

aspects, from high-level design to low-level implementation. This step-by-step refinement effectively 
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evaluates the model’s performance at different programming depths, ensuring the fairness, rationality, 

and objectivity of the experiment. 

The principles of code granularity division are based on the following considerations: 

Project Level: The model is required not only to generate code and implement functionality but 

also to demonstrate project management capabilities, including file management and module 

coordination. 

Class Level: The model is expected to divide functionalities into various functions for 

implementation. 

Function Level: The model must handle specific programming tasks, such as data processing and 

logical operations. 

By structuring the levels in this way, we can thoroughly analyze the model’s performance in 

different programming activities and thus gain a more comprehensive understanding of its potential 

applications in real-world software development. 

4.2. Metrics 

In evaluating code quality, we used the following primary evaluation metrics: code correctness, 

robustness in exception handling, and the aesthetic quality of the interface design. To achieve a 

quantitative assessment, the following evaluation methods are proposed: 

1) Correctness: The correctness of the code refers to whether the program executes as expected 

and produces the correct results. To assess this, we can divide the overall code into smaller code 

testing units and test each one. Correctness is calculated using the following formula, where Mp 

represents the number of tests passed and M is the total number of tests: 

C =
MP

M
                                     (1) 

2) Robustness: Robustness refers to the program’s ability to remain unaffected or recover well 

from extreme situations. It is calculated as follows, where Lp represents the number of tests passed 

under extreme conditions, and L is the total number of extreme tests: 

R =
LP

L
                                     (2) 

3) Appearance Usability: The appearance usability of the interface design is measured by user 

satisfaction with the UI design, with a score range of [0, 1]. To do this, we surveyed N users who 

rated the generated interface, with the score given by the i-th user recorded as Si. The aesthetic 

usability is calculated as: 

E =
∑ siN

N
                                    (3) 

4.3. Experimental Setup 

In this experiment, we used the ChatGPT-4o model to generate code and utilized Qt 6.7.1 and Qt 

Creator 14.0.1 as the experimental environment. The compiler version was MinGW 11.2.0 64-bit. 

During the experiment, for the correctness evaluation, we tested each unit with 10 test cases. For the 

robustness evaluation, we set up 8 extreme environments, including excessive input length, multiple 

concurrent operations, non-compliant operations, and resource-intensive scenarios. For the aesthetic 

usability evaluation, we recruited 5 students to rate each Qt interface generated by the model.  
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4.4. Results 

Table 2: Result Statistics. 

System 

Requirement 

Name 

Function Class Project 

One Two Three One Two Three One Two Three 

Calculator 1 0.87 0.98 1 0.75 0.84 0.9 0.53 0.48 

To-do List 1 0.68 0.95 0.95 0.8 0.87 0.85 0.57 0.52 

Simple 

Database 

Management 

System 

0.98 0.83 0.81 0.91 0.66 0.57 0.84 0.43 0.63 

Restaurant 

Management 

System 

0.96 0.64 0.88 0.93 0.61 0.82 0.72 0.54 0.43 

Personal 

Finance 

Management 

System 

0.97 0.75 0.94 0.85 0.55 0.72 0.71 0.37 0.37 

Vehicle 

Rental 

System 

0.92 0.63 0.92 0.88 0.52 0.68 0.69 0.33 0.54 

Online 

Examination 

System 

0.94 0.67 0.88 0.79 0.46 0.76 0.77 0.27 0.4 

Inventory 

Management 

System 

0.92 0.72 0.93 0.82 0.49 0.61 0.82 0.29 0.47 

Project 

Management 

System 

0.95 0.66 0.92 0.87 0.51 0.78 0.76 0.36 0.61 

Library 

Management 

System 

0.96 0.76 0.91 0.83 0.54 0.8 0.81 0.41 0.38 

Total 0.96 0.72 0.91 0.88 0.59 0.75 0.79 0.41 0.48 
Note. Correctness = One; Robustness = Two; Appearance Usability = Three. 

 

Figure 2: Result Statistics. 
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Correctness: ChatGPT exhibited a relatively consistent high level of performance regarding code 

correctness across all three levels. This suggests that it can generate the correct logic for most code 

during the generation process. However, minor errors, such as forgetting to include necessary header 

files, are still challenging to avoid. Notably, correctness slightly declined at the class and project 

levels, likely due to the increased complexity of the code in each generation. Quantitative results 

showed average correctness scores of 0.96 at the function level, 0.88 at the class level, and 0.79 at 

the project level. Making manual corrections in error instances, or with additional prompting, these 

issues were often resolved.  

Robustness: ChatGPT's performance in managing extreme cases was relatively good at the 

function level, but overall, it was still unsatisfactory. The robustness score fell from 0.72 at the 

function level to 0.41 at the project level, indicating that the code produced struggles with complex 

scenarios in real-world applications. Specifically, scenarios involving concurrent operations or high 

memory usage led to failures at the class and project levels. These findings suggest that while 

ChatGPT can generate functional code, additional safeguards and manual optimizations are necessary 

to ensure robustness in extreme conditions.  

Appearance Usability: In terms of usability and appearance design, ChatGPT performed well at 

the function and class levels but poorly at the project level. Usability scores were 0.91, 0.75, and 0.48 

for the function, class, and project levels, respectively. This indicates that maintaining consistent 

interface appearance becomes increasingly challenging as project complexity rises. Survey 

participants noted that project-level interface designs were often cluttered, with inconsistencies in 

layout and style. This underscores the difficulty of ensuring high-quality interface design without 

human intervention as the scope and granularity of the project expand.  

Nevertheless, the experimental results reveal some shortcomings. First, the experiment focused 

primarily on the Qt framework and did not cover other programming frameworks or languages, 

limiting the generalizability of the results. Second, although the evaluation metrics included 

correctness, robustness, and aesthetic usability, other potential dimensions—such as maintainability, 

scalability, and runtime efficiency—were not considered. Additionally, although prompt engineering 

was employed, further exploration is needed to determine if the prompt design could better tap into 

the model’s potential. In conclusion, while large language models (LLMs) still have shortcomings in 

code generation, their potential to improve development efficiency and reduce costs cannot be 

ignored, offering new perspectives for future software development practices. 

5. Conclusion 

This study closely examined the transformation capability of ChatGPT from general language like 

C++ to the common-used code framework like the Qt. We broke down programming tasks into three 

levels: project, class, and function, highlighting both the strengths and weaknesses of ChatGPT and 

design specific prompt engineering template for few-shot guidance. The experiment showed that 

ChatGPT performed really well with simpler tasks—especially at the function level—where it mostly 

produced correct and effective code. However, as the complexity ramped up to class and project 

levels, errors like syntax issues and missing dependencies started to increase. This indicates that while 

LLMs like ChatGPT can assist with software development, they still need quite a bit of human 

participation when it comes to larger, more complex projects. 

In future work, this assessment could extend to other programming frameworks and languages to 

see how generalizable LLMs are in different development contexts. Also, optimizing prompt 

engineering methods could lead to even better code quality and robustness. 
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