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Abstract. Signal denoising and prediction have always been a focus in the fields of electronics 

and communication. Prior to this, Fourier transform was commonly used for denoising. More 

and more researchers are seeking other better signal processing methods. This paper provides a 

method of using regression models for this processing and uses Python code to generate relevant 

data and perform regressions processing. Then this paper makes a comparison between the 

regression model and Fourier transform for signal denoising and prediction performance. Finally, 

this paper provides prospects for optimizing and improving the experimental process, as well as 

exploring more applications of regression models in signal processing, based on the experimental 

results obtained. Through research and experiments, this paper has identified the advantages and 

disadvantages of different regression models for processing different signal waves, and verified 

the feasibility of regression models for processing signals, confirming the development prospects 

of machine models in the field of signal processing. 
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1.  Introduction 

In the contemporary landscape of signal processing, the challenge of effectively denoising and 

predicting signal waveforms stands as a critical focal point for researchers and practitioners alike. Liu 

and Xu’s research on the WTMM algorithm [1] and Dragoman, D’s research on Wigner distribution 

function [2] are great examples of problem-solving. Signal waves, which are omnipresent in various 

applications such as telecommunications, biomedical engineering, and environmental monitoring, often 

suffer from noise and interference. These extraneous components can significantly hinder the accuracy 

and reliability of the signal analysis, thereby necessitating the development of effective denoising and 

prediction methods. Unlike traditional complex denoising and prediction methods, this paper aims to 

explore the feasibility of using machine learning to process signals. It can to some extent solve the 

problem of signal denoising and prediction being too cumbersome in specific situations, and also 

proposes a new approach. This paper delves into the realm of signal denoising and prediction, 

specifically through the lens of regression models. Regression models, renowned for their simplicity 

and interpretability, offer a potent tool for modelling and mitigating noise within signals. The primary 

objective of this research is to explore and evaluate the efficacy of various regression-based techniques 

in the context of three distinct types of signal waves: sinusoidal, linear, and polynomial. Each of these 
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signal types presents unique characteristics and challenges, providing a comprehensive landscape for 

assessing the performance of the proposed methods. This paper summarizes the relevant theoretical 

basis by reviewing literature. This article will also compare it with the denoising methods of regression 

models to explore their advantages and disadvantages. By applying these models to the denoising and 

prediction tasks, the research aims to quantify their effectiveness through a series of empirical 

evaluations. The findings of this research are anticipated to contribute significantly to the field of signal 

processing by highlighting the strengths and limitations of regression models in denoising and predicting 

diverse signal types. Moreover, this study seeks to lay the groundwork for future advancements in 

regression-based signal processing techniques, fostering improved accuracy and efficiency in practical 

applications. Through rigorous analysis and experimentation, this paper aspires to provide valuable 

insights and practical guidelines for enhancing signal integrity and predictive performance in various 

technological domains. 

2.  Features of These Three Signal Waves 

2.1.  Sinusoidal signal 

A sin signal wave is a signal with the most singular frequency component, and its waveform follows the 

mathematical sin curve, hence its name. A sin signal can be represented as x (t)=Asin (ω*t+φ)=A cos 

(ω*t+φ-π/2). In the formula, A is the amplitude, ω is the angular frequency (radians/second), and φ is 

the initial phase angle (radians). Sin signal waves have obvious periodicity characteristics, that is, the 

same waveform will repeatedly appear within a certain period of time, and the relationship between their 

period T and frequency function is T=1/f.  A sin wave is a continuous function that exists at any point 

in time and it also has smooth curve characteristics, without abrupt changes or jumps. Sinusoidal signal 

waves have become important research objects in fields such as signal and system, circuit theory, etc. 

due to their unique characteristics and wide applications. They have a wide range of applications in 

communication, electronics, sound, and other fields. 

2.2.  Linear signal 

A linear signal refers to one whose amplitude changes linearly over time. Mathematically, a linear signal 

can be represented as: x(t)=a ⋅ t +b. Among them, a and b are constants, and t is a time variable. It has 

four features as follows. The expression of linear signals is simple and easy to understand and process. 

It does not have periodic, oscillatory, or complex spectral characteristics. And the rate of change of the 

signal is determined by the slope a. If a is positive, the signal increases over time; If a is negative, the 

signal decreases over time. The third point is that a linear expression can accurately predict the future 

value of the signal, as it changes at a constant rate over time. Finally, the frequency spectrum of a linear 

signal in the frequency domain is simple and usually concentrated in the low-frequency part because it 

does not have periodic variations. Linear signals are widely used in various scientific and engineering 

fields, especially in areas such as system analysis, control systems, and signal processing.  

2.3.  Polynomial signal 

Polynomial signal waves refer to signal waveforms that do not satisfy a linear relationship between the 

output and input of a signal. This paper uses a quadratic polynomial as an example, as there is no clear 

formula for polynomial signals. This model has the advantages of being able to handle a variety of image 

trajectory types and flexible forms, and can dynamically adjust algorithms to prevent overfitting and 

underfitting [3]. The waveform of Polynomial signals cannot be described by simple mathematical 

functions, and their behavior is complex and difficult to predict long-term development trends. And 

some nonlinear signals exhibit similar structures at different scales, known as fractality. Besides that, 

the signal may undergo drastic changes in a short period of time, and these mutation points often 

correspond to specific events or state changes. Having chaos is also possible. Polynomial signals may 

exhibit sensitivity to initial conditions, and small changes can lead to significant changes in the long-
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term behavior of the signal. Polynomial signal waves have wide applications and research value in 

various fields such as communication, biomedicine, and geophysics.  

3.  Linear and Polynomial Regression 

3.1.  Simple introduction 

By fitting a linear equation to the observed data, linear regression is a statistical method that models the 

relationship between a dependent variable and one or more independent variables. Linear regression 

assumes a linear relationship between independent and dependent variables. It's simple and, easy to 

interpret and implement, making it one of the most commonly used models in statistics and machine 

learning. Additionally, it's computationally efficient, particularly for large datasets. However, it has 

limitations, as it's not suitable for modeling nonlinear relationships unless the data is transformed. Linear 

regression is widely applied in fields like economics, engineering, and social sciences for prediction, 

trend analysis, and understanding variable relationships. Just like Jessica Kasza, and Rory Wolfe applied 

the model to the medical field [4]. Polynomial regression extends linear regression by modeling the 

relationship between variables as an nth-degree polynomial. It can capture complex, nonlinear 

relationships by fitting a polynomial curve to the data. While it offers flexibility by allowing higher-

degree polynomials to fit more intricate data patterns, this can also lead to overfitting. Additionally, as 

the degree increases, the model becomes harder to interpret due to the growing complexity of terms. 

Many types of data are best analyzed by fitting a curve using nonlinear regression, and computer 

programs that perform these calculations are readily available [5]. Polynomial regression is commonly 

applied in scenarios where relationships between variables are nonlinear but can be approximated by a 

polynomial, such as modelling growth rates, temperature variations, and other complex physical 

phenomena. 

3.2.  Reasons for using them 

Machine learning can be applied to various areas, especially to complex problems that have no clear 

computational rule or solution [6]. Regression models' fundamental strengths in capturing underlying 

patterns within data motivate their use for signal denoising and prediction. When dealing with signals—

whether they are simple, like sin or linear signals, or more complex, like polynomial signals—noise is 

an inevitable aspect that can obscure the true signal. The ability of regression models to identify and 

represent the relationship between the input variables (such as time) and the output (signal values) makes 

them powerful tools for mitigating the impact of noise. Regression models are effective at recognizing 

patterns in data, particularly for periodic, linear, or polynomial signals. For example, linear regression 

can approximate the relationship between time and a noisy sin wave, filtering out noise by fitting the 

best line or curve to represent the signal's trend. Polynomial regression captures nonlinear relationships, 

making these models flexible enough to fit various signal types, including complex ones. Beyond 

denoising, regression models offer predictive power, enabling future signal value predictions based on 

learned relationships, which is especially useful in fields like communications, finance, and engineering. 

Their simplicity and interpretability make them preferable over more complex models, while they are 

robust to certain types of noise by capturing the main signal trend. Furthermore, regression models 

integrate easily with other signal processing techniques, such as Fourier transforms, enhancing overall 

performance in signal denoising and prediction. 

4.  Research Methods and Results 

4.1.  Using Linear Regression 

4.1.1.  Methods 

The steps of Signal using linear regression for signal denoising are as follows. Step 1 is generating a 

noisy signal: creating a synthetic signal (e.g., a sine wave or a linear signal) and adding random noise to 
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simulate a noisy signal. Step 2 is fitting linear regression: using the noisy signal as the dependent variable 

and time as the independent variable. Fit a linear regression model to this data. Step 3 is predicting the 

denoised signal: using the fitted model to predict the signal values, which should ideally represent the 

underlying trend, thereby reducing the impact of noise. And the model tries to minimize the difference 

between the predicted signal values and the noisy signal by adjusting the slope and intercept of the line. 

This process effectively smooths out the high-frequency noise that does not align with the general trend 

of the data. The fitted model predicts the signal values at each point in time. Since linear regression fits 

a straight line, the resulting signal is a smoothed version of the original noisy signal, capturing the 

general trend and ignoring random fluctuations. The steps of Signal using linear regression for signal 

prediction are also as follows. Step 1 involves extending the independent variable, specifically the time 

variable, into the future for prediction purposes. Step 2 is predicting future signal Values: Appling the 

fitted linear regression model to the extended time variable to predict future signal values. And to predict 

future signal values, we extend the time variable beyond the range used for training. The model then 

applies the learned linear relationship to these new time points to generate predictions. The model 

assumes that the linear relationship between time and signals observed in the past continues into the 

future. Thus, the predicted signal follows the same slope and intercept, providing a forecast that aligns 

with the historical trend. 

4.1.2.  Results and discussion 

The picture below shows the results of denoising and predicting different signals using a linear 

regression model: 

 

Figure 1. Processing results of linear regression model 

Linear regression performed well in denoising the linear signal, accurately fitting the data and 

effectively smoothing out noise. The denoised signal closely followed the original, with minimal error 

indicated by low MSE and MAE values. However, linear regression struggled with non-linear signals, 

such as the sine wave, where it attempted to fit a straight line to periodic data, resulting in poor denoising. 

The model was unable to capture the oscillatory nature of the sine wave, leading to significant errors 

and demonstrating the limitation of linear regression with non-linear signals. The polynomial signal 

posed a similar challenge, as the model’s straight-line approximation could not capture the non-linear 

trend, resulting in a denoised signal that deviated significantly from the original. In terms of prediction, 
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linear regression successfully extended the linear trend of a linear signal into the future, providing 

reliable predictions with low error rates. But the model couldn't predict the sine and polynomial signals 

correctly because it couldn't understand their nonlinear patterns. Linear regression offers simplicity, 

efficiency, and interpretability, making it easy to implement and interpret for signal denoising and 

prediction, with model parameters like slope and intercept directly providing insights into the trend. 

However, its limitations include being restricted to linear trends, making it less effective for signals with 

non-linear or complex patterns. The model is also sensitive to outliers, which can significantly affect 

performance by impacting slope and intercept values. Additionally, while linear regression can smooth 

random noise, it may struggle with high-frequency or systematic noise, limiting its effectiveness in more 

complex denoising tasks. 

4.2.  Using Polynomial Regression 

4.2.1.  Methods 

The steps of Signal using polynomial regression for signal denoising are as follows. Step 1 is choosing 

the polynomial degree: the first step is to determine the appropriate degree for the polynomial. The 

degree should be high enough to capture the signal's underlying pattern but not so large that it starts 

fitting the noise as well. Step 2 is fit the polynomial regression model: once the degree is chosen, the 

polynomial regression model is fitted to the noisy signal data. This involves finding the coefficients β0, 

β1…, βn that minimize the difference between the observed signal values and the values predicted by 

the polynomial. Step 3 is predicting the denoised signal: after fitting the model, it can be used to predict 

the signal values, which will represent a smoothed version of the noisy signal. The higher the degree, 

the more closely the model will fit the signal, potentially reducing noise but also risking overfitting. 

The steps of Signal using polynomial regression for signal prediction are also as follows. Step 1 

involves extending the independent variable, such as time, beyond the training model's range for 

prediction. Step 2 is predicting future signal values: use the fitted polynomial regression model to predict 

future values of the signal. The model will apply the learned polynomial relationship to the extended 

time variable, generating predictions based on the captured trend. 

4.2.2.  Results and discussion 

The picture below shows the results of denoising and predicting different signals using a polynomial 

regression model: 

 

Figure 2. Processing results of Polynomial regression model 
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Polynomial regression with a degree of 2 or higher did not significantly enhance denoising 

performance for a linear signal. While it produced a reasonable fit, the model tended to slightly overfit 

by capturing some noise as part of the signal, resulting in a higher Mean Squared Error (MSE) compared 

to linear regression, though still achieving acceptable denoising. For the sine signal, polynomial 

regression notably improved denoising performance relative to linear regression. By using a higher 

degree polynomial, the model approximated the oscillatory nature of the sine wave, creating a denoised 

signal closely aligned with the original. However, if the polynomial degree was too high, the model 

overfitted, capturing noise alongside the signal and slightly increasing the error. For the polynomial 

signal, polynomial regression excelled at denoising, as a model of appropriate degree could effectively 

remove noise while preserving the underlying trend, matching the original signal with minimal error 

and showcasing its strength with non-linear signals. In terms of prediction performance, polynomial 

regression provided accurate predictions for the linear signal, though a higher-degree polynomial led to 

minor overfitting and less precise predictions compared to linear regression. With polynomial regression, 

predictions for the sine signal got a lot better, especially when the degree of the polynomial was well-

chosen. This let the model understand that the sine wave is periodic and make good predictions about 

the future. However, for long-term extrapolation, overfitting led to unrealistic oscillations. Polynomial 

regression was particularly effective in predicting future values of the polynomial signal, as the correct 

degree accurately extended the non-linear trend into the future with low error rates. Polynomial 

regression has notable advantages, including its ability to capture non-linear relationships, making it 

suitable for signals that do not follow a linear pattern. By fine-tuning the polynomial degree, one can 

adjust its flexibility to balance signal capture and overfitting. When applied appropriately, it can provide 

better accuracy in denoising and prediction for non-linear signals compared to linear regression. 

However, polynomial regression also has limitations, such as the risk of overfitting, where the model 

captures noise along with the signal, leading to poor generalization to new data. Complexity is another 

challenge, as increasing the polynomial degree complicates the model and reduces its interpretability, 

making it less transparent than linear models. Additionally, polynomial regression may yield unreliable 

predictions when extrapolating far beyond the observed data range, especially at high polynomial 

degrees. 

4.3.  Using Fourier Transform(Denoising) 

4.3.1.  Introduction 

The Fourier Transform is a mathematical operation that transforms a signal from the time domain (or 

spatial domain) into the frequency domain. The main idea is to decompose complex waveforms into a 

set of simple sinusoidal waves—sin and cos functions. This decomposition makes it easier to analyze 

the frequency components and characteristics of the signal. The Fourier transform allows us to study the 

frequency content of a variety of complicated signals. With the explosion of digital data, both in quantity 

and diversity, the generalization of the tools based on Fourier transform is mandatory [7]. We can view 

and even manipulate such information in a Fourier or frequency space [8]. 

Formula: 

For a continuous-time signal x(t), the Fourier Transform X(f) is given by: 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞
𝑑𝑡 

where f is the frequency and j are the imaginary unit. 

For a discrete-time signal x[n], the Discrete Fourier Transform (DFT) is: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑛=0

 

where N is the length of the signal and k is the frequency index. 

The above is the transformation formula, and the below is the inverse transformation formula. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/114/2024.18278 

150 



 

 

Continuous-time signal inverse Fourier Transform: 

𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡
∞

−∞
𝑑𝑓 

Discrete-time signal inverse Fourier Transform: 

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘]𝑒𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑛=0

 

4.3.2.  Methods 

Step 1 is applying Fourier transform: the first step in denoising is to apply the Fast Fourier Transform 

(FFT) to the noisy sin signal. FFT is an efficient algorithm to compute the Discrete Fourier Transform 

(DFT), which converts the time-domain signal into its frequency components. The result of the FFT is 

a complex-valued array where each element represents the amplitude and phase of a specific frequency 

component. Step 2 is analyzing the frequency spectrum: once the signal is transformed into the 

frequency domain, you can observe the frequency spectrum. The sin wave will manifest as a peak at its 

fundamental frequency f0. Noise, on the other hand, may appear as lower amplitude components spread 

across a wide range of frequencies, rather than concentrated at a single frequency. Step 3 is filtering the 

noise: a common method for denoising involves applying a threshold to the frequency components. 

Frequencies with amplitudes below a certain threshold are considered noise and are set to zero. 

Alternatively, this research applies a band-pass filter that isolates the frequencies close to the sin wave's 

fundamental frequency f0 and removes other components. This approach preserves the sine wave while 

eliminating noise that lies outside the band. For targeted noise reduction, this research zero out specific 

frequency ranges that are identified as noise, while retaining the peak corresponding to the sin wave. 

Step 4 is applying inverse Fourier transform: after filtering the noise in the frequency domain, the next 

step is to transform the signal back to the time domain using the Inverse Fast Fourier Transform (IFFT). 

The IFFT reconstructs the time-domain signal using the modified frequency components, resulting in a 

denoised version of the original sin wave. 

4.3.3.  Result and discussion 

Here is a picture of the result of using Fourier transform to denoise sin signals: 

 

Figure 3. Processing results using Fourier transform 

The Fourier transform performed exceptionally well in denoising the sin signal. Since the sin wave 

is inherently periodic and represented by a single frequency in the frequency domain, the transform 

could easily separate the signal from the noise, resulting in a clean, denoised output.  

The Fourier Transform is highly effective in removing noise from a signal, particularly when the 

noise is high-frequency and the signal of interest is low-frequency, making it efficient for noise 
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separation. It also offers clear frequency analysis by providing an interpretable frequency spectrum, 

which aids in understanding the signal’s periodic nature and supports future value predictions. The 

Fourier Transform’s versatility enables it to handle various types of signals, including both periodic and 

quasi-periodic signals, making it a widely used tool in signal processing. However, it has limitations, 

particularly with non-stationary signals, where frequency components change over time. In these cases, 

the Fourier Transform may be less effective, and alternatives like the Wavelet Transform might be better 

suited. Another drawback is its loss of time information; while it provides excellent frequency resolution, 

it lacks time information, making it challenging to analyse transient signals where the timing of 

frequency changes is critical. 

5.  Conclusion 

Through experiments and comparisons, this paper successfully proves that machine learning models can 

be used in the computer field to process signal waves. This opens up a new way to study simpler signal 

processing methods. The specific advantages and disadvantages, as well as possible improvement 

measures, are as follows. Linear regression is a straightforward method for signal denoising and 

prediction, particularly effective for signals with a clear linear trend. Its simplicity, efficiency, and 

interpretability make it a useful baseline in signal processing, ideal for denoising signals with linear 

relationships and offering quick calculations, though it has limitations for more complex signals. 

Polynomial regression provides greater flexibility, especially for non-linear signals, as it can smooth 

noise and give accurate predictions if the polynomial degree is chosen carefully to avoid overfitting. 

However, its application demands attention to model complexity and extrapolation risks. Fourier 

Transform excels at denoising periodic signals, effectively removing high-frequency noise and 

outperforming regression models in this context. While it cannot directly predict signals and requires 

complex computations and threshold selection, it is highly suitable for denoising periodic signals. While 

this study demonstrates the effectiveness of linear and polynomial regression models for signal 

denoising and prediction, comparing them with the Fourier Transform, there are several potential 

research directions to explore further. First, future research could investigate processing more complex 

signal types, such as mixed signals or those with non-periodic noise, to validate model effectiveness in 

varied practical applications and enhance generalization. Additionally, other regression methods like 

ridge regression, LASSO regression, or support vector regression (SVR) could be explored for their 

denoising and predictive performance. Another promising direction is the application of deep learning; 

recent advancements in signal processing using deep neural networks, such as convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), could be applied for comparison with traditional 

regression models. Adaptive regression models that dynamically adjust parameters based on signal 

characteristics may also be beneficial for handling non-stationary signals. Further research could 

examine high-dimensional data processing, focusing on effectively applying regression methods in 

high-dimensional spaces and exploring dimensionality reduction techniques. Real-time application and 

optimization is another critical area, as future research could optimize regression models to achieve real-

time signal processing and validate them in practical systems. Lastly, integrating advanced noise models 

and filtering techniques with regression models could be explored to enhance denoising performance. 

Exploring these directions could improve signal denoising and prediction accuracy, expand model 

applicability, and drive technological progress in related fields. 
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