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Abstract. Quantum computing has experienced significant advancements over recent decades, 

leading to a burgeoning need for a robust theoretical framework in quantum complexity theory 

akin to that of classical computational complexity. This theory addresses the computational 

limits and structural constraints that underpin algorithm development. Quantum complexity 

theory has evolved particularly in response to the challenges and capabilities of Noisy 

Intermediate-Scale Quantum (NISQ) devices. These devices represent a critical phase in 

quantum technology, where algorithms that blend classical and quantum computational 

processes are progressively being optimized. This work provides a foundational overview of 

quantum complexity theory, emphasizing its developmental trajectory parallel to that of quantum 

device engineering. It explores the integration of quantum complexity with hybrid algorithms 
suited for the current landscape of available quantum technologies. Moreover, this paper outlines 

the pivotal role of quantum complexity theory in rationalizing the operational thresholds and 

potentials of NISQ devices, which are crucial for the next-generation advancements in quantum 

computing. 

Keywords: Quantum Complexity Theory, BQP, NISQ. 

1.  Introduction  

Quantum computing has emerged as a transformative technology, reshaping our understanding of 

computational problem-solving capabilities beyond the classical paradigms established in the last 
century. The early computational complexity theories, which arose around the 1960s, have formed a 

crucial backbone for the ongoing evolution of computer science, affecting numerous fields from 

cryptography to algorithmic theory [1]. As quantum computing began to materialize, it introduced the 
need for a new theoretical framework that would account for quantum phenomena under computational 

constraints, leading to the birth of quantum complexity theory. This novel domain has particularly 

focused on the capabilities and limitations of quantum systems in solving computational problems, 
providing a rigorous theoretical foundation for next-generation computational technologies. 

As we advance further into the quantum computing era, the development of Noisy Intermediate-

Scale Quantum (NISQ) devices presents new challenges and opportunities. Unlike ideal quantum 

computers, NISQ devices operate under significant noise and hardware limitations, necessitating the 
development of hybrid algorithms that combine classical and quantum computational processes [2]. This 
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era of quantum technology not only tests the boundaries of quantum error correction but also propels 

the refinement of quantum complexity theory. The ongoing research in this field is aimed at 

understanding the practical thresholds and the theoretical implications of quantum computing, reflecting 

on how these insights can be leveraged to accelerate advancements in the field [3]. 
This paper aims to provide a comprehensive introduction to the current state of quantum complexity 

theory, emphasizing its application to NISQ devices and the broader implications for quantum 

computing. It outlines the progression from theoretical constructs to practical implementations, 
illustrating how classical complexity classes such as P, NP, and BQP are being expanded and redefined 

through the lens of quantum mechanics [4-6]. Additionally, this work explores significant algorithms 

that have shaped the field, such as Shor’s factoring algorithm and Grover’s search algorithm, 

highlighting their impact on the understanding of quantum computational limits and the design of 
quantum algorithms. Through a detailed analysis of current NISQ technologies and hybrid quantum-

classical computational models, this paper seeks to delineate the evolving landscape of quantum 

complexity theory and its pivotal role in navigating the future trajectories of quantum computing 
technology. 

2.  Quantum computing fundamentals 

2.1.  Principles of quantum computing 
Quantum mechanics describes the physical phenomena of microscopic objects. It is difficult to measure 

the exact properties of quantum particles and instead these properties are expressed via a probabilistic 

approach. The interaction between systems of particles also create states of superposition where there 

are many states that coexist with some probability. 
Quantum computing is the study of quantum computing devices, namely devices that exploit and 

manipulate quantum physical objects to represent quantum states mathematically. The point is to harness 

the power of quantum mechanics, abusing superposition and resonance, in order to gain computational 
power. 

2.2.  Quantum states and qubits 

Qubits are the fundamental information object of quantum computing, similar to the bit in classical 

computing. The qubit is capable of retaining much more information through its probabilistic state of 
superposition compared to the deterministic classical bit. 

Qubits can be mathematically represented in terms of two orthonormal bases as: 

|ϕ⟩  = α |0⟩  + β |1⟩  where |0⟩  =(1
0
) and |1⟩  =(0

1
)                                 (1) 

Where α2 and β2 are respectively the probabilities of the qubit to collapse to the states of |0⟩  and 
|1⟩  upon measurement. 

Generally qubits are manipulated on in similar methods as the bit in classical computing, using 

quantum gates that preserve certain properties of qubits similarily to classical gates. These gates can be 
mathematically represented as unitary matrices, which are matrices that preserve the 2-norm: 

||Ux||2 = ||x||2                                                                 (2) 

where U is a unitary matrix for x in Cn. 
An example of a common unitary/quantum gate is the CNOT gate, which for two qubits |ϕ⟩  and |ψ⟩  

operate on their combined state |ϕ⟩  ⊗ |ψ⟩ : 

CNOT=  ⌊

1 0
0 1

    
0 0
0 0

0 0    0 1
0 0    1 0

⌋                                                                        (3) 

A quantum circuit is composed of many of these common gates (henceforth referred to as unitary 

matrices, or unitaries) together operating on a state composed of many qubits. A quantum algorithm 
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relies on selectively choosing a combination of the correct unitary gates to pass qubit states through in 

order to manipulate them into a desired result. 

Designing clever combinations of unitary operating gates to exploit the qubit systems’ ability to 

abuse quantum superposition is the key to achieve superior computational capabilities compared to 
classical systems. Investigating and designing such combinations and algorithms are the basis of 

quantum computing. 

The crux of quantum complexity theory is then to analyze the computational limitations of these 
quantum circuit algorithms, similar to how classical complexity analyzes resource limitations of 

classical algorithms. It is then possible to contextualize the differences between quantum computing and 

classical computing with a rigorous framework. 

3.  Classical complexity classes 

3.1.  Definitions 

To introduce quantum complexity theory we need to introduce some complexity classes in the classical 

sense first: 
P is the class of languages L ⊆ {0, 1} ∗  for which there exists a deterministic turing machine M that 

for inputs of x ∈ {0, 1} n, M terminates in q(n) time where q is some polynomial and accepts x iff x ∈ 

L. 
PSPACE is the class of languages defined similarily to P, however instead of a constraint on time 

there is only a polynomial constraint on the amount of space used to q (n). Naturally this class is much 

more powerful as it contains many algorithms that are not restricted by time complexity. 

EXP is the class of languages L ⊆ {0, 1} ∗  for which there exists a deterministic turing machine M 
that for inputs of x ∈ {0, 1} n, M terminates in 2q (n) time where q is some polynomial and accepts x 

iff x ∈ L. So in essence it is P, but with exponential time instead of polynomial. 

BPP is the class of languages L ⊆ {0, 1} ∗  for which there exists a probabilistic turing machine M 
that for inputs of x ∈ {0, 1} n, M terminates in q(n) time where q is some polynomial. 

If x ∈ L, M accepts with probability > 
2

3
. 

If x ̸∈ L, M accepts with probability <  
1

3
. 

The probability constants 1 or 2 here does not actually matter, since we can continue running the 

turing machine a constant number of times and take the majority output to manipulate the accept 

probability, as running the algorithm a large constant of times does not bring it beyond polynomial time 
constraint. 

3.2.  Class relationships 

In general, P ⊆ BPP ⊆ PSPACE ⊆ EXP, however the strictness of the relations are difficult to prove. 
Some of these relations are trivially true, while some of the others may require more rigorous 

computation and is beyond the scope of this report. A point of interest is that although these complexity 

classes are formally defined in the format of a decision problem, via sets of languages. However, many 

other problems such as search and optimization can often be  reformulated as decision problems, and 
vice-versa, and we will generally refer to all of these problems to be bound within the complexity class’ 

restraints, rather than just strictly limit the definition to just decision problems. 

4.  Quantum complexity theory 

4.1.  BQP 

BQP is the class of languages L ⊆ {0, 1} ∗  for which there exists some classically reproducible 

polynomial sized quantum circuits {Cn} that are built upon universal gates that for inputs of x ∈ {0, 1} 
n, for q some polynomial. 

If x ∈ L, Cn(|0⟩ ⊗q(n)) accepts with probability > 
2

3
. 
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If x ̸∈ L, Cn(|0⟩ ⊗q(n)) accepts with probability < 
1

3
. 

 

Figure 1. A circuit diagram of shor’s quantum period finding subroutine used for factoring (Photo credit: 
Original). 

As show in the figure 1. An intuitive description of BQP is the class of decision problems solvable 

on a quantum turing machine within polynomial time with some bounded probability. Similar to BPP 

the probability does not matter, proved in Bennett’s past work [7]. 
BQP is the quantum analog of BPP [8, 9]. The relationship between BQP and its classical analogs 

have been proved to be BPP ⊆ BQP ⊆ PSPACE. Whether or not BPP = BQP remains to be proved. 

In general, BPP is the class of efficiently computable problems on a classical computer, and BPP ⊆ 

BQP demonstrates the advantage of quantum computers having a wider set of efficiently computable 

problems [10]. It remains to be discovered which problems are in the separation between BPP and BQP. 

4.1. Important results in quantum complexity 

One of the most important results in separation of BPP and BQP is Shor’s factoring algorithm [11]. 
Shor demonstrates a solution to the factoring problem with a reduction of the problem to an order-

finding problem then providing a polynomial-time quantum subroutine that solves the reduced problem. 

The important result is that Shor demonstrates that the factoring problem, a problem that is not worst-
case solvable in polynomial time can be solved efficiently in quantum computing. 

Shor’s algorithm has since been experimentally implemented on modern quantum devices [12, 13]. 

Efficient factoring in particular is an incredibly important subject in the field of cryptography, where 
Shor’s algorithm has proved to be an exciting breakthrough [14]. Within the field of quantum complexity, 

this indeed shows Factoring ⊆ BQP. 

Another interesting result is Grover’s search algorithm, with provides a quadratic speedup to 

unstructured search using a quantum algorithm. BBBV further proved that it is impossible to provide 
more than a quadratic speedup through a quantum speedup, and that Grover’s algorithm is indeed 

optimal [15]. 

Physical implementation of Grover’s algorithm on quantum devices continues to be an exciting point 
of research, especially successful implementation of the algorithm on modern devices, which contain 

noise and perturbations without the flawless error correction of a theoretical quantum turing machine 

[16]. 

5.  NISQ complexity 

Much of the work in the previous section discuss the theoretical framework of quantum complexity 

theory with theoretically ideal quantum turing machines. Our current ability to develop large scale 

quantum computers capable of supporting a large number of qubits is inadequate; it remains a challenge 
to maintain qubit systems in large scale in engineering. 
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One of the principle challenges of quantum computing is error correction for noisy qubits. Due to 

engineering challenges it is difficult to have noiseless quantum machines that are of a decent scale to 

run algorithms on; it is relatively simple for the physical systems that encode the qubit’s information to 

become perturbed by environmental factors that are difficult to control. 
Noisy Intermediate-Scale Quantum (NISQ) technologies refer to the quantum devices available with 

our current engineering constraints [17]. Noisy quantum devices with a small yet sizable number of 

qubits, typically anywhere between 50-1000 qubits constructed. The term was coined to describe most 
quantum devices that current technology allows to be built. Current development of NISQ algorithms 

are generally hybrid algorithms where a classical algorithm has access to an imperfect quantum 

subroutine. 

NISQ as a complexity class can generally be defined informally as the class of problems solvable on 
a classical probabilistic turing machine that has access to a noisy and small scale quantum devices, 

which can be loosely defined as a quantum computer with: 

Polynomial input size of 0-qubit strings, which may be perturbed by noise. 
Polynomial sized quantum unitaries with entries or results tampered with by noise. 

Chen and al formally define NISQ in their supplementary work. 

Generally, analysis of NISQ algorithms in specific cases is the leading work for within this field. For 
unstructured search, NISQ fails to achieve quadratic speedup like Grover’s algorithm. While on the 

other hand, for the Bernstein-Vazirani problem over n-bits, it is shown the original algorithm is robust 

enough to be noise resistant and still provide significant speedup over the classical counterpart with 

using an NISQ algorithm. 
Generally the algorithms in the NISQ era are conducted with a classical-quantum hybrid with the 

classically difficult part that can be optimized done on a quantum device, hoping to achieve considerable 

speedup due to the separation of BQP and BPP. It has also been shown there exists separation between 
NISQ and BPP, as well as NISQ and BQP. Which problems can be efficiently solved lie between these 

complexity classes is to be investigated. 

Most of the algorithmic research related to NISQ as a complexity class work with variational 

quantum algorithms (VQAs), which are algorithms which encode a problem into an optimization 
objective function, choose a parametrized quantum circuit (PQC) as the ground state typically a 0-qubit 

string, and then attempt to solve the optimization problem using the state space of the PQC using a 

hybrid algorithm. A plethora of works regarding the uses of this style of quantum annealing approach 
as well as investigation into physical implementation have concluded that: It is difficult to expect 

quantum computing, in its limited form, to arrive at optimal quantum speedups with fault intolerant 

algorithms, algorithms must be design to take accountability of always-present noise. 
It is unknown outside of specific fields such as cryptography if NISQ algorithms can have significant 

material application. Nonetheless, the volatility of potential breakthrough from advancements in 

technological accessibility makes the subject exciting to research in. 

Fields such as cryptography, work in complexity theory for problems such as factoring and collision 
finding as well as their limiting factors in the NISQ era have been outlined extensively. From complexity 

theory, various frameworks for NISQ algorithm discussion have also been presented. 

6.  Conclusion 
This paper has provided a comprehensive exploration of the burgeoning field of quantum complexity 

theory, particularly highlighting its relevance and application in the era of Noisy Intermediate-Scale 

Quantum (NISQ) devices. The discussion extended from the foundational principles laid out in classical 
computational complexity theory to the novel challenges and frameworks presented by quantum 

computing. By elucidating the relationship between traditional complexity classes and their quantum 

counterparts, notably BQP, this work has underscored the transformative potential of quantum 

algorithms such as Shor’s factoring algorithm and Grover’s search algorithm, demonstrating their 
profound implications for cryptography and database search, respectively. Looking ahead, the research 

landscape for quantum complexity theory is ripe with opportunities for significant breakthroughs and 
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technological advancements. As the field continues to grapple with the inherent limitations of NISQ 

devices, including noise and error rates, the development of more sophisticated error correction 

techniques and the theoretical exploration of fault-tolerance are paramount. Future research will need to 

focus on refining these techniques to harness the full potential of quantum computing. Additionally, the 
exploration of hybrid quantum-classical algorithms offers a promising avenue for immediate practical 

applications, providing a bridge between current technological capabilities and the ideal quantum 

computing future. 
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