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Abstract. As the field of Automated Program Repair (APR) continues to evolve, traditional 

Neural Program Repair (NPR) methods, while successful in low-resource computing scenarios, 

still confront numerous challenges, including the demand for extensive training data, the limited 
generality of specially designed networks, and a lack of robustness. In recent years, Large 

Language Models (LLMs) have demonstrated remarkable efficacy in downstream code-related 

tasks, thanks to their potent comprehension and text generation capabilities, gradually emerging 

as pivotal tools in automated program repair. Compared to NPR techniques, LLM-based APRs 

exhibit superior repair performance and enhanced generality, leading to their increasing adoption 

in APR tasks. Currently, the performance of zero-shot LLM-based APRs has surpassed that of 

NPR. LLM-based APRs have issues, such as excessive fine-tuning costs, data leakage concerns, 

and a shortage of domain-specific knowledge. This paper aims to review and summarize the 

latest advancements in LLM-based APRs from the perspectives of innovation, challenges, and 

solutions, providing researchers with profound insights and future directions. 
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1.  Introduction 

Automated Program Repair (APR) has gradually emerged as a significant research topic in software 

engineering and artificial intelligence. In recent years, with the development of deep learning 

technologies, Neural Program Repair (NPR), as an emerging APR method, has increasingly attracted 
the attention of researchers. Fig 1 is a workflow of the learning-based automated program repair tool. 

NPR typically leverages deep neural networks (DNNs) within a neural machine translation framework 

to transform buggy code into correct code, essentially treating the program repair task as a machine 
translation task where buggy code is "translated" into correct code. During training, NPR systems aim 

to maximize the probability distribution function of actual patches, continuously optimizing the model 

to enhance repair performance. The core advantage of NPR lies in its ability to learn complex repair 
patterns from numerous bug-fix pairs, thereby outperforming traditional APR methods in terms of 

performance. Recorder is the first NPR system to surpass traditional APR techniques on the Defects4J 

dataset, exhibiting superior repair performance compared to the then-current State-of-the-Art (SOTA) 

technique, TBar. Despite the significant progress made by NPR in repair performance, numerous 
challenges still need to be overcome, including the demand for extensive training data, limited model 

generalization capabilities, and reliance on specialized network designs[1]. 
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Recently, the advent of Large Language Models (LLMs) has demonstrated remarkable capabilities 

in various tasks within software engineering. Compared to traditional NPR, LLM-based APR excels in 

repair performance and flexibility, particularly in zero-shot learning scenarios, surpassing many custom-
trained NPR models[2-4]. However, LLM-based APR also encounters new challenges, such as high 

fine-tuning costs, risks of data leakage, a lack of domain-specific knowledge, and insufficient 

adaptability in complex repair scenarios [5-7]. These challenges indicate that continuous optimization 
and improvement are necessary for systems to harness the potential of LLM-based APR in practical 

applications. 

• The contributions of this paper are as follows:To the best of our knowledge, our paper is the first to 

provide a comprehensive review of the LLM-based Automated Program Repair (APR) domain from 

the perspectives of innovation, challenges, and solutions, offering a novel viewpoint to this field. 

• We have investigated eight state-of-the-art LLM-based APR systems, compared their performance, 
analyzed their innovations and challenges, and proposed solutions to address those challenges. 

• We outline future directions for LLM-based APR systems. 

 

Figure 1. Workflow of the learning-based automated program repair tool. 

2.  Benchmarks and Metrics 

2.1.  Benchmarks  
In Automated Program Repair (APR) tasks, benchmarks evaluate and compare the effectiveness of 

different repair techniques. 

2.1.1.  Java Language Benchmark 
Defects4J (v1.2/v2.0): This is a widely used benchmark dataset for Java program repair. It contains Java 

program bugs extracted from multiple open-source projects—the—total number of bugs covered by 

Defects4J v1.2 and v2.0 amounts to 835. 
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HumanEval-Java: This is a relatively new Java benchmark dataset for evaluating program repair 

techniques. The dataset consists of 164 bugs, created by transforming the language of HumanEval and 

subsequently injecting bugs. 

2.1.2.  Python Language Benchmark 

QuixBugs: QuixBugs is a benchmark dataset for Python, encompassing 40 bugs. These bugs originate 

from various Python open-source projects like Django and Flask. This benchmark dataset is specifically 
designed to assist researchers in testing and comparing the effectiveness of Python program repair 

techniques. 

BugsInPy: This is another benchmark dataset for Python, containing bugs extracted from multiple 

Python projects. While the volume of data and specific sources of bugs in BugsInPy may vary, it 
provides a rich array of bug examples for researching Python program repair. 

2.1.3.  C Language Benchmark 

CodeFlaw: CodeFlaw is a benchmark dataset designed for C language programs, with its bugs 
originating from various C language open-source projects such as SQLite and libpng. Although 

CodeFlaw is suitable for testing C language program repair techniques, due to its relatively small size, 

it may only comprehensively cover some common types of bugs found in C language programs. 

2.2.  Metrics 

The primary evaluation metrics for Automated Program Repair (APR) tasks include Incorrect Patch, 

Plausible Patch, and Correct Patch [8-10]. An Incorrect Patch is a generated patch that fails to repair the 

bug in the code correctly or introduces new errors. A Plausible Patch addresses the code defect but has 
not been thoroughly tested and verified. A Correct Patch, on the other hand, effectively repairs the defect 

without introducing any new issues [11]. 

3.  LLM-Based APR review 

Currently, there is a diverse range of Automated Program Repair (APR) methods based on Large 

Language Models (LLM), including FitRepair, TypeFix, InferFix, RepairAgent, FixAgent, ThinkRepair, 

Srepair, and ChatRepair  [12-19]. These methods have unique characteristics regarding model 

architecture, technical implementation, and application effects, providing new ideas and approaches for 
automated program repair. Fig 2 is an overview of the standard framework of LLM-Agent-based APRs. 

 

Figure 2. The standard framework of LLM-Agent-based APRs. 

3.1.  FitRepair 

FitRepair leverages program synthesis techniques, integrating test cases and program specifications to 

generate repair patches. It ensures that the generated code passes all relevant tests. Its objective is to 
enhance software reliability by providing high-quality automated repairs. 
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3.2.  TypeFix 

TypeFix addresses type mismatch issues by generating corresponding type repair patches. It analyzes 

type information within the program to ensure that the repairs accurately resolve type-related defects. 

3.3.  InferFix 

InferFix generates repair patches by reasoning about the program's semantics and structure, aiming to 

improve repair accuracy. This method leverages contextual information to understand code intent, 
enhancing the repairs' effectiveness. 

3.4.  RepairAgent 

RepairAgent employs deep learning models to analyze code defects and generate repair suggestions. By 

learning from historical repair cases, this tool applies that knowledge to new bug detection tasks, 
enhancing the intelligence level of automated repairs. 

3.5.  FixAgent 

FixAgent integrates multiple repair strategies to provide flexible repair solutions. It comprehensively 
considers various contextual information when generating patches, enhancing the repairs' effectiveness 

and adaptability. 

3.6.  ThinkRepair 
ThinkRepair leverages program analysis and reasoning techniques to generate high-quality repair code, 

emphasizing code readability and maintainability. This tool aims to provide sustainable repair solutions 

and reduce subsequent maintenance costs. 

3.7.  SRepair 
SRepair automatically generates repair patches through symbolic execution and program analysis 

techniques, mainly targeting complex program errors. Its design objective is to enhance the reliability 

and precision of repairs in addressing a wide range of defects. 

3.8.  ChatRepair 

ChatRepair, based on a dialogue generation model, provides interactive code repair suggestions. 

Through dialogue, users can adjust and optimize the repair solutions to meet specific needs and contexts. 

Table 1. State-of-the-art LLM-based APR. 
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Defects4J(v1.2/v2.0) - - 164(74/90) - 98/- 332(300/32) - - 162(114/48) 

HumanEval-Java - - - - - - - - - 

QuixBugs - - - 79 39 - - - 39 

BugsInPy - - - - - - - 26 - 

CodeFlaw - - - - - - - - - 
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4.  Innovations 

4.1.  Reduced Training Requirements for LLM-based APR: 

Compared to traditional Neural Program Repair (NPR), Automated Program Repair (APR) based on 
Large Language Models (LLM) offers significant advantages in terms of training requirements. LLM-

based APR typically does not require additional training. For instance, AlphaRepair treats repair tasks 

as fill-in-the-blank problems, similar to the masked language model task in CodeBERT, thus achieving 
excellent results [20]. Srpeiar employs context completion techniques, while FixAgent leverages the 

GPT-3.5 API without needing extra processes. ThinkRepair, on the other hand, enhances precision 

through logical reasoning[21-22]. InferFix and FitRepair quickly generate repair solutions through 

semantic analysis and model versatility. RepairAgent and PyTy fully exploit the potential of pre-trained 
models in intelligent interaction and language understanding—TypeFix and ChatRepair advance code 

repair by utilizing open-source models and dialogue formats. 

4.2.  Simplified Network Design 
In contrast to traditional Neural Program Repair (NPR) methods, LLM-based APR eliminates the need 

for complex network design. FixAgent and Srpeiar directly utilize GPT-3.5, while AlphaRepair and 

TypeFix rely on open-source models such as CodeBERT and CodeT5, all based on the Transformers 
architecture. Comparatively, NPR methods like Recorder, DlFix, and CoCoNuT require intricate 

network structures, such as tree-structured deep neural networks or the integration of multiple CNNs, 

for hierarchical representation and processing. 

4.3.  Adoption of Advanced Techniques 
LLM-based APR actively incorporates a more significant number of advanced techniques. Compared 

to NPR, which typically relies on training or fine-tuning, LLM-based APR utilizes additional generated 

information to aid reasoning, incorporating techniques such as Chain-of-Thought (CoT), agents, 
retrieval, and multi-round dialogues [23-25]. 

4.3.1.  InferFix 

InferFix leverages semantic and structural analysis, combined with contextual information and Retrieval 

techniques, to retrieve relevant information from vast code repositories, thereby enhancing the accuracy 
of repairs [24]. 

4.3.2.  FitRepair 

FitRepair integrates model ensemble techniques, explicitly incorporating a CodeT5 Base, two fine-tuned 
CodeT5 models, and a retrieval-enhanced CodeT5 to improve repair capabilities[25]. 

4.3.3.  RepairAgent 

RepairAgent generates repair solutions by analyzing error types, context, and programming languages 
and retrieving similar historical cases[26]. 

4.3.4.  FixAgent 

FixAgent combines multiple repair strategies with Ensemble techniques, integrating different models 

and methods to enhance performance and reliability [27]. 

4.3.5.  ThinkRepair 

ThinkRepair employs CoT (Chain-of-Thought) techniques to analyze erroneous code deeply, 

comprehend its logic and semantics, uncover the nature of errors, and propose repair suggestions[28]. 

4.3.6.  SRepair 

SRepair augments the repair process by generating additional information. It initially uses GPT-3.5 to 

produce detailed error reasons and repair suggestions for the buggy function. Subsequently, the buggy 
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function, along with these detailed reasons and tips, is input into MigiCoder-7B to generate higher-

quality patches[29]. 

4.3.7.  TypeFix 
TypeFix specializes in resolving type mismatch issues by analyzing type information to generate precise 

repair patches. It employs Fine-tuning techniques based on pre-trained models to fine-tune for specific 

languages and type errors, enhancing its understanding of type information [30]. Using Retrieval 
techniques, it searches code repositories to retrieve relevant code snippets and repair experiences, 

analyzing error characteristics to find similar error cases and corresponding repair methods. 

4.3.8.  ChatRepair 

ChatRepair employs a dialogue generation model to enable interactive code repair and supports multi-
round dialogues to refine repair solutions [31]. Users can provide contextual information and repair 

requirements, which the system analyzes and adjusts to generate repair code that meets the specified 

needs. ChatRepair can understand user requirements and reasoning through error information and 
propose potential repair methods. 

5.  Challenges and solutions 

5.1.  Challenge 1: Data Leakage 
Data leakage is a significant challenge that must be considered when using large language models. 

Closed-source models, such as GPT-3.5 and GPT-4, have inaccessible training data, making it difficult 

to detect data leakage and design mitigation strategies. Although the training data for post-open-source 

models is accessible, the vast amount of data makes detecting and mitigating data leakage equally 
challenging [5-6]. 

5.2.  Solution Strategies 

5.2.1.  Data Filtering + Re-training 
"An Empirical Study on Data Leakage Issues in the Field of Neural Program Repair" proposes new data 

collection, filtering, and partitioning strategies to construct a clean dataset and re-train the NPR (Neural 

et al.) model to mitigate data leakage. 

5.2.2.  Detecting Memorization in Base Models 
"Unveiling Memorization in Code Models" (ICSE 2023) designs different detection methods based on 

whether the training data is open-source. Models with open-source training data employ Type-1 clone 

detection to determine if the outputs are identical to code snippets in the training data. For models with 
closed-source training data, they measure the model's level of memorization for the outputs using the 

perplexity (PPL) of the output sequences. 

5.3.  Challenge 2: High Overhead 
Using Large Language Models (LLMs) for Automated Program Repair (APR) presents a significant 

challenge in terms of high overhead, including the GPU requirements for open-source LLMs and the 

costs associated with API calls for closed-source models [32]. 

5.4.  Solution Strategies 

5.4.1.  Reducing the Number of Candidate Patches 

According to "StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair 

Systems" (Zhong et al., 2022), when the number of candidate patches reaches approximately 170, the 
model can achieve 90% of its optimal performance. Therefore, it is appropriate to reduce the number of 

candidate patches to lower overhead [33]. In practical applications, appropriately reducing the number 
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of candidate patches can decrease the computational resources and time required for generating and 

validating patches without significantly affecting the repair effectiveness. 

5.4.2.  Adoption of Advanced Techniques such as Self-Correction 
As demonstrated in "Large Language Models Have Intrinsic Self-Correction Ability" (Liu et al., 2024), 

Self-Correction technology can effectively enhance the reasoning capabilities of LLMs. When applied 

in LLM-based APR, it is crucial to use unbiased prompts and turn off relevant hyperparameters [10]. 
Specifically, unbiased prompts should be used, and hyperparameters related to model samplings, such 

as do_sample, temperature, top_k, and top_p, should be turned off. This approach prevents the model 

from being influenced by unreasonable sampling when generating patches, thereby improving the 

accuracy and reliability of the patches while reducing unnecessary computational overhead. By 
appropriately applying Self-Correction technology, it is possible to enhance model performance while 

lowering overhead. 

6.  Conclusion and future 

This paper presents an overview of the development history, innovative achievements, and current 

challenges faced by Automated Program Repair (APR) technologies based on large language models 

(LLMs) in recent years. LLMs have demonstrated advantages over traditional Neural Program Repair 
(NPR) approaches in various repair scenarios, highlighting their potential to cater to diverse program 

repair needs. However, it must be noted that issues such as data leakage and high computational costs 

still need to improve the advancement of these technologies. 

Future research efforts should address these challenges. Firstly, there is a need to develop more 
effective methods for detecting and mitigating data leakage, which includes refining data filtering 

techniques and enhancing data leakage assessment methodologies. In program repair applications, 

technological breakthroughs are required to enable repairs at the project and repository levels, tackling 
complex systems and cross-module issues. Furthermore, addressing program repairs for low-resource 

languages, such as C# and Rust, and those involving intricate logic represents a crucial direction for 

future research. This necessitates advancements in LLMs' capability to comprehend and process 

complex algorithms and control flows. 
Research should explore more efficient algorithms and optimization techniques to reduce 

computational overhead[34-35].For instance, reducing the number of candidate patches and refining 

self-correction techniques can enhance cost-effectiveness and efficiency. Further architectural 
innovations and training strategies may enhance LLMs' ability to handle extended contexts. Through 

these concerted efforts, LLM-based APR systems hold the promise of successful application in broader 

and more complex scenarios, pushing the boundaries of automated program repair technology. 
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