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Abstract. This paper explores the application of Q-learning in Adaptive Cruise Control (ACC). 

Environment Modeling and Decision-Making: The radar detects signals from obstacles ahead 

and transmits them to the ACC system. The Q-learning algorithm makes decisions based on 

environmental changes, such as the speed and distance of the vehicle in front. Through trial and 

error and continuous learning, it optimizes the following strategy. Reinforcement learning is a 

computational method that automates decision-making and learning processes toward goal-

oriented tasks. It is framed within the Markov Decision Process (MDP), using states, actions, 

and rewards to define the interaction between a learning agent and the environment. 

Reinforcement learning emphasizes the agent’s interactive learning with the environment, 

without the need for imitative supervision signals or complete environment modeling. The 

Markov Decision Process provides a theoretical framework for achieving goals through 

interactive learning. All reinforcement learning problems are considered an MDP process, 
serving as the fundamental framework for modeling reinforcement learning. By updating the 

state-action value function Q(s, a), the Q-learning algorithm selects actions in each state that 

maximize long-term returns, enabling intelligent control. Experimental results show that the 

method applied in this paper ensures driving safety and comfort, and it can be practically 

implemented.   
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1.  Introduction   

With the development of automotive intelligence technology, intelligent cruise control systems, as an 
advanced driver assistance system (ADAS), can automatically control vehicle acceleration, deceleration, 

or braking, adjusting the distance or relative speed with the vehicle in front to maintain a safe range. 

This greatly reduces the burden on drivers and improves driving safety and comfort. The research and 
application of such systems not only reflect considerations for driver safety and comfort but also 

represent the advanced stage of automotive collision avoidance radar technology, signaling a future 

development trend. Intelligent vehicle cruise control systems, such as Adaptive Cruise Control (ACC), 
are an advanced active safety feature. Through radar, ultrasonic, and infrared sensors, these systems 

detect obstacles, pedestrians, and vehicles ahead, and have automatic braking functions to ensure precise 

distance control. Such systems not only maintain a stable speed during high-speed driving, avoiding 

frequent acceleration and braking, thus reducing driver fatigue, but can also realize automatic queuing 
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and vehicle-following functions at low speeds (e.g., below 40 km/h), completely freeing the driver’s 

right foot for a simpler, more relaxed, and enjoyable driving experience[1]. 

In 2024, Onur Cihan, Zeynep Musul, adopted a new system architecture of intelligent adaptive cruise 
control for safety[1]. In 2024,J. S. Saputro,et al adopted design of an intelligent cruise control system 

using fuzzy PID control on an autonomous electric vehicle prototype[2]. In 2023, Milad Andalibi, et al 

adopted optimization of intelligent autonomous cruise control system based on design and simulation[3]. 
In 2024, Tianchen Ruan,et al adopted general hierarchical control system model ACC system[4]. In 

2020, Faezeh Farivar,et al adopted Security of network control system in intelligent vehicle and adaptive 

cruise control[5]. In 2004, Chan Yuen Fong and Zhang Zhendong adopted PID control theory in the 

design of ACC systems[6]. In 2009, Zhang Lei et al. analyzed car-following behaviors and abnormal 
behavior characteristics based on experimental data and established a driver characteristic self-learning 

method using recursive least squares with a forgetting factor. Although driving characteristics were 

considered in the adaptive cruise control system, the complexity of the algorithm’s self-learning process 
affected speed and accuracy[7]. In 2012, Shakouri et al. optimized the vehicle’s nonlinear characteristics 

into linear ones, allowing for the use of a linear time-invariant model to control tracking indicators[8]. 

In 2010, Li and Kural conducted real-time research and observation on vehicle dynamics models and 
optimized ACC algorithms using the least-tracking method[9]. In 2013, Bifulco et al. proposed a full-

speed ACC system capable of adapting to various real-world traffic conditions and the driver’s actual 

attitudes and preferences. However, these attitudes and preferences may fluctuate, leading to excessive 

calculation deviations in the algorithm, resulting in instability under extreme conditions[10]. In 2010, 
Yi et al. analyzed the ACC system using transitional state variables and obtained the desired 

acceleration[11]. In 2003, Mobus et al. studied the motion characteristics of ACC systems using a 

nonlinear method with finite time constraints[12]. Fuzzy Control primarily uses fuzzy reasoning to 
control the system, then applies expert experience to achieve precise control. In 2006, José E et al. 

applied fuzzy control theory to study ACC systems[13]. In 2007, Naranjo et al.[14] designed a 

longitudinal controller based on fuzzy logic, similar to the underlying control algorithm for ACC 

systems designed using reinforcement learning. Hou Haiyang[15], combining rolling optimization over 
a finite time horizon with feedback correction, built an MPC prediction model based on the longitudinal 

motion state equation of a vehicle, while establishing objective functions and constraints. Using the 

minimum two-norm method, they optimally solved for the desired acceleration and output performance 
indicators. Li Peng et al designed a car-following control strategy using linear optimal quadratic theory, 

with vehicle distance and relative speed as state variables, selecting the desired acceleration of the 

vehicle as the output, and the deceleration of the preceding vehicle as the disturbance, establishing the 
state-space equation of the car-following process[16]. The acceleration error controlled the acceleration 

of the vehicle, and the optimal solution was used as the desired acceleration. Zhang Lei[17] proposed a 

longitudinal driving assistance system based on a driver car-following model, integrating ACC and 

FCW/FCA (Forward Collision Warning/Forward Collision Avoidance). Using the recursive least 
squares method with a forgetting factor, they identified driver car-following model parameters online 

and built a BP neural network model to classify abnormal driving behaviors and adaptively match 

algorithm parameters. 
This paper applies Q-learning in ACC through environment modeling and decision-making: radar 

detects signals from obstacles ahead and transmits them to the ACC system. The Q-learning algorithm 

makes decisions based on environmental changes, such as the speed and distance of the vehicle ahead. 
Through trial and error and continuous learning, the car-following strategy is optimized. Intelligent 

Control: By updating the state-action value function Q(s, a), the Q-learning algorithm selects actions in 

each state that maximize long-term returns, enabling intelligent control and ensuring driving safety and 

comfort. 

2.  Background Knowledge 

ACC integrates onboard radar for detecting vehicles ahead, allowing for vehicle following while 

retaining the constant speed cruise functionality. The ACC system is generally divided into four main 
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components: the sensor unit, which collects signals including the vehicle’s status, driving environment, 

and input information from the human-machine interface; the ACC controller, the core unit of the system, 

responsible for processing driving information and determining vehicle control commands; the actuator, 
mainly comprising the brake pedal, accelerator pedal, and vehicle transmission actuators, used to realize 

vehicle acceleration and deceleration; and the human-machine interface, which enables the driver to 

make decisions about activating the system, setting parameters, displaying system status, and alerting in 
emergencies.  

The ACC system is an intelligent automatic control system developed based on existing cruise 

control technology. During vehicle operation, distance sensors (radar) installed at the front of the vehicle 

continuously scan the road ahead, while wheel speed sensors collect speed signals. It has four operating 
conditions. In the cruise condition, there are no target vehicles ahead of the self-vehicle. The driver 

maneuvers the experimental vehicle to accelerate or decelerate from one speed to another, maintaining 

that speed for a period. The driver’s speed change process during this condition can provide a reference 
for vehicle acceleration or deceleration in the CC mode of the personalized ACC control strategy. In the 

approaching target vehicle condition, there is a target vehicle ahead. The self-vehicle approaches the 

target vehicle from a distance at a speed greater than that of the target vehicle and maintains a stable 
follow for a period. The initial relative distance in this experiment ranges from 30m to 60m. This 

condition is used to analyze the driving characteristics of the driver during the deceleration process while 

approaching the target vehicle, as well as the driver’s stability in maintaining a following distance. It 

provides a reference for the personalized ACC’s approaching process. In the following target vehicle 
condition, the self-vehicle first follows the target vehicle for a stable distance. Subsequently, the target 

vehicle accelerates or decelerates to a certain speed at a fixed acceleration and then travels at a constant 

speed. During this process, the driver operates the accelerator or brake pedal according to their habits, 
accelerating or decelerating while maintaining a certain distance from the target vehicle.  

The speed changes of the target vehicle differ by more than 20 km/h, aimed at analyzing the 

characteristics of the driver’s acceleration or deceleration behavior to maintain following during 

significant speed changes of the target vehicle. This also captures the variation in relative distance 
throughout the process, providing a reference for the construction of following strategies in the 

personalized ACC control strategy. In the target vehicle cutting out condition, the self-vehicle initially 

follows the target vehicle for a stable distance. When the target vehicle changes lanes and the self-
vehicle loses the target, the driver then accelerates to maintain a certain speed. This process is used to 

analyze the transition from following decision-making to cruising decision-making when the target 

vehicle cuts out. It provides a reference for mode switching in the personalized ACC control strategy. 
The Q-learning algorithm is a method for solving reinforcement learning problems using temporal 

difference learning. This type of reinforcement learning does not rely on model-based methods nor does 

it require a state transition model of the environment. The control problem is solved by action-value 

iteration, where the action-value function is updated through learning, leading to policy updates, and 
eventually, the action-value function and policy converge. 

MDP is characterized by a tuple of five elements: state set (s), action set (a), state transition 

probability (p), reward function (r), and discount factor (γ). Q-learning Algorithm Principles: 
1) State (s): Each reachable grid in a grid map is defined as a state s, where t represents the time 

step. 

2) Action (a): In each state (s), the agent (e.g., a robot) can choose actions such as moving up, 
down, left, or right. 

3) Reward (r): The immediate feedback the agent receives after performing an action. A positive 

reward is given upon reaching the goal, while otherwise, it may be zero or a negative reward, denoted 

as R+1. 
4) Q-Table (Q(s,a)): The core of the algorithm is the Q-function, which records the cumulative 

expected reward after taking action (a) in state (s). This is initialized with arbitrary values and updated 

through learning. 
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5) Q-learning updates the Q-values using the Bellman equation. Its core idea is that the expected 

return of selecting the optimal action should equal the current reward plus the maximum expected return 

from following the optimal policy from the next state onward. The update rule is as follows: α is the 
learning rate, determining the extent to which new knowledge is integrated with old knowledge, where 

0<α<1. γ is the discount factor, used to evaluate the importance of future rewards, 0≤γ<1. 

6) R+1 is the reward obtained immediately after taking action a. maxa′Q(s+1,a′)  is the 

maximum Q-value of all possible actions in the next state s+1, reflecting the expected return of following 

the most favorable strategy. Q-learning path planning steps involve initializing the Q-table by assigning 
initial Q-values to all state-action pairs (s-, a). The process follows a loop for each time step t until the 

termination condition is met. In this process, the action At is chosen based on the current state s and the 

ε-greedy policy. After selecting an action, it is executed, leading to state s+1, and the agent receives an 
immediate reward R+1. The Q-value (Q(s,a)) is then updated according to the Q-learning update rule. 

Following this, the state transitions to s←s+1, and the process continues to the next time step. Ultimately, 

starting from the initial point, the path is selected based on actions that maximize the Q-value until the 
goal is reached. The Q-value computation in Q-learning is as follows: 

Q(s,a)=R(s,a)+γ*max{Q(ŝ,ã)}                          (1) 

ACC adaptive cruise control, as an intelligent automatic control system, assists the driver in operating 
the steering wheel and brakes effectively. Its parameters include speed and distance. If there is no vehicle 

ahead, the system drives at the speed set by the driver. If the vehicle ahead decelerates, preventing the 

set speed from being reached, the ACC system maintains a safe following distance and applies brakes 
or adjusts speed as necessary. 

The Q-learning algorithm can control the vehicle’s driving or braking systems to automatically adjust 

speed, ensuring the vehicle maintains a safe following distance. This process can be viewed as the agent 

continuously exploring the environment and learning the optimal behavior strategy to adapt to different 
driving scenarios and driver needs. 

3.  ACC Combined with Reinforcement Learning 

The pseudocode for the intelligent cruise method based on reinforcement learning applied in this paper 
is as follows: 

Step 1: Select an action. In the state s derived from the current Q-value estimation, choose an action 

a. However, if all Q-values are initially zero, what action should we select? This highlights the 

importance of the exploitation trade-off. 
Step 2: The number of actions is set to 6, and the exploration is performed 1000 times with the target 

room being Room 5, the discount rate is 0.8. Before each exploration, the current position and action of 

the control body are randomized by generating a random number. 
Step 3: As the control body progresses towards the destination, at each step, the control body iterates 

the reward function R matrix, checking whether the R-value is greater than zero, i.e., determining 

whether the action is optimal. 
Step 4: If the action is appropriate, the control body records this action in the experience function Q 

matrix. During each iteration, different action values are compared, and after comparison, the Q-value 

is iterated according to the formula. This process repeats until the Q-table is fully updated. 

Step 5: Once the Q-value iteration is complete, test the control body’s movement from the initial 
coordinate to the endpoint coordinate. End. 

The flowchart is shown in Figure 1: 
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Figure 1. Algorithm Flowchart 

4.  Experiment 

The hardware environment for running the algorithm in this paper is as follows: CPU 12th Gen Intel(R) 

Core(TM) i5-1240P, GPU Orayldd Driver Device, Memory 16GB. The software environment is: OS 
Windows 11, Visual Studio 2022. The results of the algorithm are shown in Figures 2, 3, 4, and 5. The 

relevant data during the operation of the algorithm in this paper are shown in Table 1,2,3,4. 

 

Figure 2. At the beginning of the iteration, the Q-values are distributed around 0, with only one value 

being 100. 
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Figure 3. During the iteration, the Q-values continuously iterate and randomize. 

 

Figure 4. In the process of iteration, the changes in Q-values are not significant, with only some values 

changing from 0 to -1. 

 

Figure 5. At the end of the exploration, the Q-value distribution curve becomes diversified and 

randomized. 

Table 1. At the beginning of the iteration, the Q-values are distributed around 0, with only one value 

being 100. 

 S1 S2 S3 S4 S5 S6 

A1 -1 -1 -1 -1 0 -1 

A2 0 0 0 0 0 100 

A3 -1 -1 -1 0 -1 -1 

A4 -1 0 0 -1 0 -1 

A5 0 -1 -1 0 -1 0 

aA6 0 0 0 0 0 0 
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Table 2. During the iteration1, the Q-values continuously iterate and randomize. 

 S1 S2 S3 S4 S5 S6 

A1 -1 -1 -1 -1 51 -1 
A2 -1 0 -1 64 -1 100 

A3 -1 -1 -1 64 -1 -1 

A4 -1 80 51 -1 51 -1 

A5 40 -1 -1 64 -1 100 
A6 0 0 0 0 0 0 

Table 3. During the iteration2, the Q-values continuously iterate and randomize. 

 S1 S2 S3 S4 S5 S6 

A1 -1 -1 -1 -1 51 -1 

A2 0 0 0 64 0 100 

A3 -1 -1 -1 64 -1 64 

A4 -1 80 51 -1 51 -1 
A5 40 -1 -1 64 -1 0 

A6 0 0 0 0 0 0 

Table 4. At the end of the exploration, the Q-value distribution curve becomes diversified and 

randomized. 

 S1 S2 S3 S4 S5 S6 

A1 -1 -1 -1 -1 51 -1 

A2 -1 0 -1 64 -1 100 
A3 -1 -1 -1 64 -1 -1 

A4 -1 80 51 -1 51 -1 

A5 40 -1 -1 64 -1 0 

A6 0 0 0 0 0 0 

5.  Conclusion 

The paper demonstrates the role of Q-learning in ACC. Environmental modeling and decision-making: 

Signals detected by radar sensors are transmitted to the ACC system, and the Q-learning algorithm 
makes decisions based on environmental changes (such as the speed and distance of the vehicle ahead). 

Through continuous trial and error and learning, the algorithm optimizes the car-following strategy. 

Reinforcement learning is a computational method that understands and automates decision-making and 

learning processes aimed at achieving specific goals. It utilizes the MDP as a formalized framework to 
define the interaction between the learning agent and the environment using states, actions, and rewards. 

Reinforcement learning emphasizes the agent’s interactive learning process with the environment, 

without requiring imitable supervisory signals or complete modeling of the cyclic environment. The 
MDP provides the theoretical framework for interactive learning to achieve objectives. All 

reinforcement learning problems are modeled as an MDP, which serves as the foundational framework 

for reinforcement learning. By updating the state-action value function Q(s,a), the Q-learning algorithm 
selects actions in each state that yield the highest long-term reward, enabling intelligent control. The 

experiments show that the method used in this paper can ensure both driving safety and comfort. The 

method can be practically applied to solve the difficulties drivers face, such as judging the distance to 

the vehicle ahead in real-time. The research reveals that intelligent cruise control includes scenarios such 
as constant-speed cruising, approaching the vehicle ahead, and situations where the vehicle ahead cuts 

in or cuts out. The calculation principle is based on the onboard sensors receiving signals from obstacles 

ahead, which are reflected into the computing system. The reinforcement learning algorithm iteratively 
derives the optimal experience value and transmits it to the control center, which then adjusts the power 
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output of the transmission system. This ensures that speed and distance meet safety and comfort 

standards. 
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