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Abstract. Environmental monitoring plays a crucial role in modern urban development, yet it 

faces challenges related to the accuracy of data collection and the battery life of sensor nodes. 

This study investigates the design and implementation of an environmental monitoring system 

that integrates edge computing and multimodal sensors. The paper proposes the combination of 
edge computing’s low latency and distributed processing capabilities with the diversity and data 

redundancy of multimodal sensors to achieve efficient and precise environmental monitoring. 

The system employs the LSTM (Long Short-Term Memory) time series prediction model to 

dynamically adjust the sampling frequency of sensors, thereby optimizing energy consumption. 

Experimental results indicate that this method significantly improves the real-time 

responsiveness, accuracy, and battery life of the environmental monitoring system. This study 

makes significant contributions to the field of environmental monitoring by addressing technical 

challenges, economic feasibility, and social impacts, thus providing strong support for the 

sustainable development of smart cities. 

Keywords: Edge Computing, Multimodal Sensors, Environmental Monitoring, Smart City 

Development. 

1.  Introduction 
In recent years, with the acceleration of urbanization and industrialization, environmental pollution has 

become increasingly severe, posing significant challenges to public health and sustainable 

development[1]. As a national-level new area in China, Xiong'an New Area is at the forefront of 

addressing these issues. By implementing smart city technologies aimed at creating a green, ecologically 
livable environment with intelligent management, Xiong'an strives to enhance urban governance 

efficiency and improve residents' quality of life[2]. Integrating edge computing and multimodal sensors 

into environmental monitoring systems represents a cutting-edge approach to improving the accuracy 
and efficiency of data collection, processing, and analysis[3].  

This study aims to explore the effectiveness of these technologies in overcoming challenges related 

to data accuracy and sensor node endurance. It introduces an innovative method that combines edge 
computing with multimodal sensors to construct an efficient and precise environmental monitoring 

system through real-time data collection, machine learning model predictions, and dynamic sampling 

frequency adjustments[4]. By optimizing sensor deployment and data analysis algorithms, the system 

improves the precision and efficiency of environmental monitoring. 
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To some extent, this research contributes to the field of environmental monitoring by exploring the 

application of emerging technologies and proposing practical solutions. Additionally, this study 

provides insightful recommendations for developing smart city infrastructure, aiding in the advancement 

and application of urban environmental monitoring technologies[5]. 

2.  Case study 

Prior to integrating edge computing and multimodal sensor technologies, the environmental monitoring 

system in Xiong’an New Area relied on traditional centralized monitoring methods. The limitations of 
this approach included sparse sensor distribution, which hindered comprehensive coverage of the entire 

region, and data transmission that depended on a central server, affecting the timeliness and reliability 

of data processing. Additionally, the short battery life of sensor nodes, along with frequent device 

maintenance and replacement, posed challenges to management efficiency, resulting in high overall 
monitoring costs. Particularly in monitoring key environmental factors such as air quality, water quality, 

and noise levels, the system lacked accuracy and real-time responsiveness, making it difficult to swiftly 

address sudden environmental changes. Faced with these issues, Xiong’an New Area urgently required 
a more efficient, precise, and sustainable environmental monitoring solution for its urban development 

and management[6]. 

Against this backdrop, Xiong’an New Area began to extensively apply Internet of Things (IoT) 
technologies, deploying a sensor network across the region to monitor environmental factors such as air 

quality, water quality, and noise levels in real-time. However, despite improving data collection 

capabilities, traditional monitoring systems continued to face two major challenges: data collection 

accuracy and sensor node endurance. Firstly, due to the complex interactions between different 
environmental factors, data from individual sensors was insufficient to accurately reflect the overall 

environmental conditions, often leading to significant errors in data interpretation. Secondly, the limited 

battery life of sensor nodes, coupled with prolonged high-frequency data collection and transmission, 
accelerated battery depletion, thus increasing maintenance costs and operational burdens. 

In response to these challenges, Xiong’an New Area introduced the integration of edge computing 

and multimodal sensor technologies to overcome the limitations of traditional monitoring systems. Edge 

computing offers distributed processing capabilities, allowing for local data preprocessing, which 
reduces data transmission delays, alleviates the load on central servers and significantly enhances the 

system's real-time responsiveness. Meanwhile, the incorporation of multimodal sensors enables 

simultaneous monitoring of multiple environmental parameters, with data redundancy and 
multidimensional analysis improving the accuracy of the collected data. This technological integration 

not only enhances the efficiency and precision of the environmental monitoring system but also extends 

the battery life of sensor nodes, thereby reducing maintenance costs and improving system sustainability.  

3.  Theoretical analysis 

3.1.  Improvement in Data Collection Accuracy 

Multimodal sensors, by integrating various types of sensors such as temperature, humidity, air quality, 

and light intensity, can capture environmental data from multiple dimensions. This diversity and data 
redundancy help enhance the accuracy of the monitoring data[7]. For instance, by combining PM2.5 

data with temperature and humidity information, a more comprehensive understanding of air quality 

variations can be achieved, leading to more accurate predictions. 
Edge computing processes and analyzes data locally, reducing transmission delays and improving 

the real-time nature of the data. When data collected by multimodal sensors is quickly processed and 

analyzed on-site, it can be immediately fed back into the decision-making system, thereby enhancing 
both the responsiveness and accuracy of the overall system. 
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3.2.  Efficient Data Integration and Analysis 

The distributed processing capability of edge computing nodes allows data to be processed 

simultaneously across multiple nodes, thus improving both the efficiency and reliability of data 

handling[8]. The data collected by multimodal sensors can undergo preliminary processing and analysis 
at different edge nodes, reducing the burden on any single node[9]. To better validate the effectiveness 

of multimodal data integration, this study designed a series of experiments to specifically explore the 

performance of deep learning techniques[10], particularly the Long Short-Term Memory (LSTM) model, 
in predicting environmental monitoring data[11]. 

3.3.  Experiment Background 

Xiong'an New Area has long faced air quality issues, particularly frequent PM2.5 concentration 

exceedances, posing significant threats to residents' health and the sustainable development of the 
environment. Therefore, this experiment selected PM2.5 as the primary monitoring indicator and 

combined it with meteorological parameters such as temperature and humidity to validate the 

improvement in environmental prediction achieved by multimodal data fusion technology[12]. 
The experimental data were sourced from a historical dataset collected over the past year from a 

monitoring station in Xiong'an New Area. The dataset includes environmental parameters such as PM2.5, 

temperature, and humidity, with hourly sampling frequency. The goal of the experiment is to analyze 
this historical data to predict the PM2.5 concentration changes over the next 24 hours, thus validating 

the application of multimodal data fusion and the LSTM time-series prediction model in environmental 

monitoring. 

3.4.  Experimental Process 

3.4.1.  Data Preprocessing. First, historical air quality monitoring data for one year were collected, 

including three dimensions: PM2.5, temperature, and humidity. To ensure the usability of the data, 

records with a high proportion of missing values were deleted, and outliers and noise were addressed. 
Then, the data were divided into a training set and a testing set. The training set was used to build the 

LSTM model and, in the meantime, to evaluate the model's prediction accuracy. 

3.4.2.  Model Construction. The experiment employed an LSTM time-series prediction model. LSTM 

is a deep learning model commonly used for processing sequential data, particularly adept at handling 
long-term dependencies. To verify the effect of multimodal data fusion, the experiment was designed 

with two comparative groups. One group used only PM2.5 as a single indicator while the other used 

multimodal data, including PM2.5, temperature, and humidity. By comparing the results of the two 
groups, whether multimodal data improves prediction accuracy was analyzed. 

3.5.  Experimental Design 

(1) Univariate Prediction (PM2.5): Only historical PM2.5 data were used for prediction. The LSTM 
model takes PM2.5 concentration values from the past 24 hours to predict concentration changes for the 

next 24 hours. 

(2) Multimodal Prediction (PM2.5 + Temperature + Humidity): In addition to PM2.5 data, 

temperature and humidity were included as additional input dimensions. The model not only considered 
historical PM2.5 changes but also incorporated trends in temperature and humidity for more refined 

predictions. 

(3) Evaluation Metrics: Root mean square error (RMSE) and accuracy were used as evaluation 
criteria. In particular, predictions with an error margin of less than 5% were focused on and this margin 

was used as a standard for evaluating the model’s effectiveness. 
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3.6.  Experimental Results 

Through experimental comparison, significant differences in prediction accuracy were found between 

using single-variable data (PM2.5) and multimodal data (PM2.5, temperature, and humidity): 

(1) Univariate Prediction (PM2.5): For predictions with an error margin of less than 5%, the model's 
prediction accuracy was 73%. While LSTM effectively captured short-term PM2.5 fluctuations, the 

absence of other environmental factors made the model struggle when dealing with complex 

meteorological changes, leading to relatively average prediction accuracy. 
(2) Multimodal Prediction (PM2.5 + Temperature + Humidity): When temperature and humidity data 

were added to the model, prediction accuracy significantly improved. Within the same error range, the 

model’s prediction accuracy reached 97%. The inclusion of multimodal data allowed the model to better 

capture the interactions between environmental factors, improving its ability to predict changes in 
PM2.5 concentration. 

3.7.  Experimental Analysis 

The experimental results show that single-sensor monitoring data (e.g., using only PM2.5 data) is often 
insufficient to accurately reflect complex environmental changes. PM2.5 concentrations are not only 

affected by their own historical trends but also by meteorological conditions (e.g., temperature and 

humidity). By introducing multimodal data, the LSTM model can more accurately capture the 
correlations between different environmental factors, resulting in more reliable predictions. 

For instance, when temperatures rise, water evaporation increases, which affects the dispersion of 

PM2.5. If the model relies solely on historical PM2.5 data, it may fail to capture this complex physical 

process. However, with the inclusion of temperature and humidity data, the model can more accurately 
predict future changes in PM2.5 concentration. 

Additionally, multimodal data provides redundancy, allowing the system to rely on data from other 

sensors when one sensor malfunctions or experiences data loss. This further enhances the system’s 
reliability and the robustness of data processing. 

 

Figure 1. Prediction comparison: PM2.5 only vs. multi data  

The Battery Life of the Sensor Node is Extended 

By leveraging the local decision-making capabilities of edge computing, the sampling frequency of 
sensors can be dynamically adjusted according to predicted environmental changes. For instance, when 

environmental changes are rapid, the sampling frequency is increased, while it is decreased when the 

environment is stable. This dynamic adjustment significantly conserves energy, thereby extending the 
battery life of sensor nodes and reducing maintenance costs. 
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Figure 2. Energy consumption: dynamic sampling vs constant high sampling 

Figure 2 is a line chart comparing energy consumption, illustrating the predicted energy consumption 
of dynamic sampling versus constant high-frequency sampling. As shown, the energy consumption of 

dynamic sampling is approximately 0.60 times that of constant high-frequency sampling, significantly 

reducing energy usage 

4.  Conclusion 
This study explores the design and implementation of an environmental monitoring system based on the 

integration of edge computing and multimodal sensor fusion. It primarily addresses the challenges of 

data collection accuracy and sensor node battery life in environmental monitoring. Leveraging the low 
latency and distributed processing capabilities of edge computing, along with the diversity and 

redundancy of multimodal sensor data, this research proposes an efficient and accurate monitoring 

solution. This is achieved by incorporating the LSTM time series prediction model, which dynamically 
adjusts sensor sampling frequency to optimize energy consumption, significantly improving the 

system’s real-time performance, accuracy, and battery life. The study not only contributes to the 

technological domain but also provides strong support for the sustainable development and improves 

management efficiency of smart cities. 
However, this study has some limitations. Field validation was insufficient; although the 

experimental results demonstrated the effectiveness of the proposed method, there was a lack of large-

scale, real-world validation data. Future studies could deploy sensor networks in real-world scenarios 
for long-term monitoring to further verify the system's reliability and practicality. Additionally, the 

variety of data used in this study was limited, focusing mainly on environmental parameters such as air 

quality, temperature, humidity, and noise levels. Future research could incorporate a wider range of 
sensor data, such as water quality and light intensity, to further enhance the system’s comprehensive 

monitoring capabilities. 

There is also room for improvement in the algorithms used. While the LSTM time series prediction 

model was employed, opportunities for optimization and enhancement remain. Future studies could 
explore integrating other advanced machine learning and deep learning algorithms to improve prediction 

accuracy and system responsiveness.  

Lastly, although this study touched on privacy protection, it did not delve deeply into data security 
and privacy measures. Future research could focus on incorporating data encryption, privacy protection 

protocols, and data management strategies to safeguard user data. 
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Looking ahead, environmental monitoring systems will become more intelligent, capable of self-

learning and adapting to environmental changes, thereby achieving more efficient data processing and 

decision-making. With the integration of big data analytics, these systems will be able to handle vast 

amounts of data, extracting valuable insights and trends to inform urban management. Advancement in 
IoT technology will facilitate wider deployment of environmental monitoring systems, leading to the 

creation of comprehensive monitoring networks. By optimizing energy consumption and enhancing 

system efficiency, these systems will contribute significantly to green, sustainable development, 
supporting the construction of smart cities. In the future, the development of relevant policies and 

standards will further promote the adoption and application of environmental monitoring technologies, 

ensuring data reliability and standardized system operations. 
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