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Abstract. AI Choreographer is a deep learning model that is able to generate dance motions 

according to music easily. However, several difficulties and weaknesses in the model still make 

it difficult to use. For example, the model generates realistic motions, but sometimes the motions 

are repetitive or do not respond to the audio correctly. Also, the model does not have a usable 

render that allows it to directly animate the provided models with generated data. We improved 

our base model to generate more realistic and better dance motions, and we also created a usable 

automated render pipeline to directly render the generated motions into an animation of the 

human models provided by the user. We improved the generation quality by introducing more 

audio features into the model so that the models can utilize more features for better results. Also, 

we overcame different difficulties in the rendering process, including applying the AI-generated 

numpy motion data to provided SMPL models and converting the animated SMPL models into 

usable FBX models. In general, the improved model generates motions that are more diverse and 

realistic than the base model, which provides dance motions that have higher quality. 

Keywords: Dance Generation, Motion Rendering, Deep Learning, Artificial Intelligence for Art, 

Artificial Intelligence Generated Content (AIGC). 

1.  Introduction 

Dance has already become a prevalent culture worldwide, as many people use it to express and share 

their ideas. However, dance is still a skill for people, and we must put much time and effort into 

practicing it to perform well. Fortunately, dance can also be treated as a language, and people can try to 

use AI models to help with dance motion generation, just like how AI models treat natural languages. 

That’s why some dance generation models, like AI Choreographer, appeared. Those models could use 

a piece of music as an input and automatically generate the dance motions according to the music. 

Unfortunately, AI Choreographer still has weaknesses that make it difficult for people to use. The AI 

Choreographer did not provide an official render to use the generated data to generate an animated model 

that could directly be used in many industries. For improvement, we added a usable render that can 

directly render the generated motion onto a user provided model, and output a ready-to-use FBX model. 

This generated FBX model can directly be used by most of the popular 3D rendering software and game 

engines. 

Moreover, the AI Choreographer uses audio features, which are the identity that could describe audio, 

as tokens to compose the audio transformers. However, the amount of audio features used in this model 

is not sufficient to capture the rich audio information in the music clip. After our investigation, we 

classified all audio features into two main categories: Spectral Features and Rhythm features. With the 
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two main categories of features captured, the model generates dance motions that better match the beats 

and rhythms of the input music.  

2.  Related Works 

2.1.  3D Human Motion Generation 

Although human motion generation is still challenging in robotics, computer vision, and graphics, this 

topic is already well-studied, and there are some well-developed solutions to help deal with human 

motion generation. With the development of deep learning, people can use deep neural networks to build 

and train models to generate diverse motions, such as the CNN neural network [1,2] or the Transformer 

model [3]. AI Choreographer [4] is a music-conditioned 3D dance generation model with the help of a 

new dancing motion dataset: AIST++ [5]. This model allows the generation of dance motions according 

to different music using Transformer models to study, analyze, and generate different dance motions by 

extracting and utilizing the features from music and building relationships between different audio 

features and poses. EDGE (Editable Dance Generation) is another dance generation model built with a 

transformer-based diffusion model with a powerful music features extractor. This model also allows for 

generating “realistic and physically plausible dances.” [6].  

2.2.  The Transformer Models 

Dance motion generation is similar to natural language processing [7]; different motions are connected 

in a particular sequence. The Transformer Model is an excellent way to train and generate dance motions, 

like natural language analysis and generation. The Transformer Model is a deep learning [8] model that 

uses attention to calculate the relationship between tokens from the given model. When generating, the 

Transformer Model will always use its arguments trained from datasets to make predictions on what 

mostly will the next token be. This process allows computers to do natural language analysis and 

processing or, more extended, work on image [9], audio [10], or dance motion generation [4,6]. The 

Transformer Model here will receive an audio clip and generate dance motions according to the audio 

clip given. The model will output matrixes to indicate joint positions and rotation in a 3D space, which 

could used in either video rendering or robot motions. 

2.3.  Audio Features Extraction 

Music will hugely affect the dance's motion. Hence, it is also very important to use the features of music 

to help with the model training process. By identifying features such as envelope [11], MFCC [12], and 

Chroma [13], we can tell the models what type of music they are and what their rhythms are, which will 

help classify and produce more precise arguments while going through the attention mechanism in the 

model. Librosa [14] is a Python library that helps with audio feature extraction, which allows us to utilize 

different audio features to improve model generation quality. 

3.  Backgrounds 

3.1.  The Transformer Model 

The main building block for this model is the so-called Scaled-dot-Product Attention [3]. The Scaled-

dot Product Attention function can calculate vectors Q (Query), K (Key), and V (Value) simultaneously 

and calculate the weights of the values, which represent the relationships of the values. The dot product 

of vector Q with all keys is performed, and the dot product is divided by the square root of the vector’s 

dimension 𝑑𝑘, and the SoftMax of the product is calculated. Finally, the SoftMax value will perform 

another multiplication with vector V and calculate the values' weights. Here is the general formula for 

the Scaled Dot-Product Attention function: 

Attention(𝑄,𝐾,𝑉)=softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (1) 
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Figure 1 also explains this formula visually: 

 

Figure 1. The visual model of Scaled Dot-Product Attention [3]. 

Multiple Scaled Dot-Product Attentions get together and formed Multi-Head Attentions, which is the 

most important building block of a transformer model, which we will explain later. The Multi-head 

Attention gets Query, Key, and Value vectors and perform a linear transformation for each of those. The 

multi-head attention will apply the Q, K and V vectors into each layer of scaled dot-product attention, 

and finally concatenate all results and perform another linear transformation, which is represented in the 

graph below: 

 

Figure 2. The Visual Model of Multi-Head Attention [3] 
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Figure 3. The Visual Model of the Transformer Model [3] 

For the transformer model, just like other neural transduction models, has an encoder and decoder. 

During the encoding process, the model will map the series of input into a continuous representation, 

and the decoder will use the generated continuous representations to generate the output sequence. For 

each sublayer of the encoder, it contains a multi-head attention and a simple and fully connected feed-

forward network. The structure of the sublayer of the decoder is similar but the decoder contains an 

extra masked multi-head attention. A transformer model contains the same number of encoder layers 

and decoder layers, and usually the number of layers is 6. Figure 3 below shows the visualization of the 

transformer models: 

3.2.  Skinned Multi-Person Linear Model (SMPL) 

SMPL [15] is the main model used in this project to visualize generated motions, which are represented 

by the rotation angles of all joints. Here are two formulas that are essential in the process of calculation. 

The first formula is used to calculate the transformation matrix of joints according to a vector of turning 

angles related to a particular part of the model, which uses the Rodrigues formula to convert the vectors 

into rotation matrixes as follows: 

exp(�⃗⃗� 𝑗) = 𝐼 + �̂̅�𝑗 sin(∥ �⃗⃗� 𝑗 ∥) + �̂̅�𝑗
2
cos(∥ �⃗⃗� 𝑗 ∥) (2)  

Where  �⃗⃗� 𝑗 represents the relative rotation angle of a joint related to its parents in the kinematic tree 

and 𝐼 represents the 3x3 identity matrix. 
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In order to calculate the world positions of the joints during the transformation, we also need to 

calculate the transformation of each joint relative to their T-pose positions with the formula as follows: 

𝐺𝑘
′ (θ⃗ , 𝐽) = 𝐺𝑘(θ⃗ , 𝐽)𝐺𝑘(θ

∗⃗⃗  ⃗, 𝐽)
−1

(3) 

Where the T-pose of the model is represented by 𝜃∗⃗⃗⃗⃗  in the formula and 𝜃  represents the rotations of 

joints in that frame 𝑘, and 𝑱 represents the matrix contains the transformation information of each joint 

of the model. With the help of formula 2 and formula 3, the absolute positions and rotations of each 

joint in the model can be easily calculated. Please refer to the paper of SMPL model for the absolute 

positions’ calculation formula [15]. 

Also, different individuals have different body shapes. For example, some people are taller than 

others or some people have larger stomachs than others. SMPL models have the compatibility to express 

different body shapes with the following formula: 

𝐵𝑆(c; 𝑆) = ∑ β𝑛𝑆𝑛

|β⃗⃗ |

𝑛=1
(4) 

Where the 𝛽  represents the linear shape coefficient, and 𝑆𝑛  represents the orthonormal principal 

components of shape displacements, which are the simplified and standardized data from the original 

shape displacements [15]. With this formula, SMPL model is compatible with expressing a variety types 

of body shapes. 

Because of the different body shapes, the joint locations are also different from each other, and it is 

very important to automatically adjust the joint locations in different body shapes. Otherwise, there 

would be rendering issue while SMPL is trying to do the skinning for the skeleton. Hence the formula 

below will automatically calculate different joint locations: 

𝐽(β⃗ ; 𝒥, 𝑇, 𝑆) = 𝒥 (𝑇 + 𝐵𝑆(β⃗ ; 𝑆)) (5) 

Where 𝑻 represents the template location matrix and 𝒥 represents the matrix that transforms rest 

vertices into rest joints [15]. The matrix 𝒥 contains example poses from many different people with 

variety types of poses so that it will make sure that the SMPL model is compatible with all types of body 

shapes with different joint locations and with different poses. The formulas above are some of the most 

essential formulas that make sure the model will render and work properly. 

3.3.  Music Features 

Music features are also very important information while generating dance poses, especially in this 

project; we used more music features to optimize the training and generation results. Music features are 

the characteristics of music, which use data to represent those characteristics and help with the music 

classification while training and generating the dance poses. According to the APIs Librosa [8] provides, 

we classified all the extractable music features into two major types: Spectral Features and Rhythm 

features. Spectral Features, for example, the chroma and MFCC of a piece of music, are the features that 

can be represented with a graph. Rhythm features, like the tempo of music, are the features that are more 

related to the rhythm and beats of the music. Using those features while training, the music can be 

classified into a more detailed genre so that the model can generate more appropriate dances with the 

detailed classifications.  

4.  Methods 

4.1.  Music Features Extraction 

We used the publicly available audio processing toolbox Librosa [8] to extract music features and 

optimize training results. We extract the envelope of a music clip to see the changes in amplitude and 

frequency over time. We also extract the MFCCs (Mel Frequency Cepstral Coefficients) [12] and 
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chroma [13] of the music clip to extract the music's characteristics and melodic features, which the 

graphs of MFCC and the chroma extracted by Librosa are shown and explained as below:  

 

Figure 4. The MFCC feature of An Audio Represented in Graph [16,17] 

The MFCC can be calculated with the following process [17]: 

1. Pre-Processing: First amplifying higher frequencies, then divide the signal into small, overlapping 

frames, and finally apply a Hamming Window to soften edges of each frame. 

2. Fast Fourier Transformer (FFT): Convert the time domain signal to the frequency domain. 

3. Mel-filterbank: Separate into different frequency bands and emphasize important frequencies. 

4. Logarithm: Take the logarithm of output from the Mel-filterbank, which compresses the dynamic 

range of audio and more closely matches human sound intensity. 

5. Discrete Cosine Transform (DCT): Highlights the most significant features of the sound in each 

frame, which effectively captures the characteristics of a sound. 

 

Figure 5. The Chroma Feature of an Audio Represented by Graph [18], where the X-axis represents the 

time and the Y-axis represents the different chroma of audio. 

The basic formula that calculates the chroma of audio is represented as below: 

𝑐ℎ𝑟𝑜𝑚𝑎[𝑘, 𝑡] = ∑ 𝑆[𝑚, 𝑡]𝑚∈𝐹(𝑘) (6) 

Where 𝑘  represents the pitch class at time frame 𝑘 , 𝑆[𝑚, 𝑡] represents the value of power 

spectrogram value at frequency bin 𝑚 and time frame 𝑡, and 𝐹(𝑘) represents the frequency bins of the 

particular audio.  

One-hot peaks and one-bot beats are also used to extract the pattern of rhythms. The tempo of the 

music is also extracted, which is also a rhythmic feature to see the speed of the music. The zero-crossing 

rate is also used in optimization and can recognize any part with no volume. The Spectral Centroid and 

Spectral Bandwidth features are also used in optimization, which indicates the frequency of energy a 

clip of music concentrates and shows how wide the energy spreads. All of these features above, which 

represent the melodic, rhythmic features, and characteristics of a music clip, help optimize the training 

result by having more features for the models to classify different types of music.  
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4.2.  Dance Poses Generation 

 

Figure 6. The main processes of Dance Poses Generation. Rotation angles and extracted audio features 

are input into the model to generate new dance motions, and the generated dance motion in the form of 

NPY file will be fed into the automated rendering pipeline for model rendering. The automated rendering 

pipeline will apply the generated motion onto an FBX model and render inside Blender. 

The figure above shows the dance pose generation processes, including the rendering part, which has 

not been officially released by the developer of the AI Choreographer. First, the audio extractor will 

extract the essential audio features from the audio file provided and send the extracted features to the AI 

Choreographer. The model includes two transformers: the audio transformer, which will help with 

processing the audio features given from the extractor, and the motion transformer, which will process 

the dance motions according to the rotation angles from the previous frames. With the combination of 
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the two, the model will come up with a cross-model transformer to generate the dance motion in the 

future frames, which will finally output as a numpy file.  

4.3.  3D Animation Rendering 

The rendering part will start with the numpy file generated by the AI Choreographer by applying the 

turning angles into the prepared FBX model converted from the SMPL model, and the converter will 

output an animated FBX model. The animated FBX model can directly imported into any popular 3D 

modeling or rendering software, which we are using Blender here, to see the result. 

One of the improvements we made here is providing a usable dance pose renderer using the numpy 

array results generated by the model. Based on the source code of Blender Plugin – SMPL-to-FBX 

(https://github.com/softcat477/SMPL-to-FBX)– we created a new plugin that takes the numpy file 

generated by the model and any SMPL model. The plugin will automatically apply the numpy file to 

the SMPL file as animation and convert the animated SMPL file into FBX. The animation application 

will follow the joint map below for conversion: 

 

Figure 7. Joints used by the converter to incorporate the generated motions into FBX models. The 

corresponding joint and the numbering are listed on the left, and the positions of each joint are presented 

on the right. 

The whole converting process can be visualized as below: 
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Figure 8. Visual Representation of Converter. With the provided SMPL model and generated motions, 

the converter will automatically convert into FBX and render into animation. 

5.  Results 

We compared our optimized model with the baseline model to see the differences and improvements in 

the dance generation results. Firstly, we performed a FID score calculation to compare the generated 

results between different models in a quantitative way. The test results of the base model, other dance 

generation model, and our optimized model are shown in the table below: 

Table 1. FID Scores Between Different Dance Generation Models 

Model Name Motion Quality (FIDk) 

Li et al. [19] 86.43 

Dancenet [20] 69.18 

DanceRevolution [21] 73.42 

FACT (Base model) 35.35 

FACT-improved (ours) 33.48 
Note: The realism and quality of generation can be measured by FID scores. Lower FID scores represent more realistic 

motion. The data of our base model and other models are from the paper of the base model. 

 

As we can see from the table above, our optimized FACT model has the lowest FIDk score. A lower 

FID score means the motions we generated have smaller differences compared to the videos danced by 

real humans, which means the dance motions generated by our improved model are the most realistic 

among the different models we are comparing here. Also, you can see the differences in the dance poses 

between the base model and the generated models: 

 

Figure 9A. Motion Comparison between the base model (right) and our improved model (left) on the 

same frame 
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Figure 9B. Motion Comparison between the base model (left) and our improved model (right) on the 

same frame 

 

Figure 9C. Motion Comparison between the base model (right) and our improved model (left) on the 

same frame. 

From the series of comparisons on different keyframes of motions, dance motions generated on our 

models have more responses to the beats of the music, and the motions are more diverse, obvious, and 

realistic than the dance motions generated by the base model. Dance motion generated by the base model 

sometimes tends to be steady, or the amplitude of the dance movement is insufficient that people might 

think the model is standing at the same location or drifting in the air without foot movement, as shown 

in Figure 9A, but after adding different audio features into the model, the model started to be more 

sensitive to the music and the dance motions have response to any of the beats, and also the poses and 

transitions are more suitable for the music clip, as shown in figure 9C. Also, dance motions generated 

by our model tend to be more diverse in poses. The motions tend to vary from the initial pose as time 

goes on, which also makes the dance motions more realistic, interactive, and interesting, as shown in 

Figure 9B. 

6.  Conclusion 

Overall, the AI Choreographer, the AI dance generation model, provides people a way to generate dance 

motions more easily, and with our enhancement of this model, the AI Choreographer is even stronger 

and easier to use. The improvements we brought into this model include bringing more audio features 

to the model to analyze and generate more realistic and detailed dance motions and bringing a usable 

render that allows for directly generating dance motion videos, reducing the effort to manually render 

the generated dance motions. Our provided dance generation pipeline is such a powerful tool for people 

that this model is applicable to many fields and industries, including dance design, game development, 

films, and television. Our provided dance generation pipeline can also ignite individuals’ creative 
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processes to create and enhance their personal art projects and let people get in touch with dance, this 

important culture, and art language in an easier and more direct way. 
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Appendices 

Appendix A: Source Code of Converter 

Convert.py 

from scipy.spatial.transform import Rotation as R 
# mathutils are only available for py3 
#from mathutils import Matrix, Vector, Quaternion 
from FbxReadWriter import FbxReadWrite 
from SmplObject import SmplObjects 
import argparse 
import tqdm 
import sys 
sys.path.append('~') 
 
def getArg(): 
    parser = argparse.ArgumentParser() 
    parser.add_argument('--input_pkl_base', type=str, required=True) 
    parser.add_argument('--fbx_source_path', type=str, required=True) 
    parser.add_argument('--output_base', type=str, required=True) 
 
    return parser.parse_args() 
 
if __name__ == "__main__": 
    args = getArg() 
    input_pkl_base = args.input_pkl_base 
    fbx_source_path = args.fbx_source_path 
    output_base = args.output_base 
 
    smplObjects = SmplObjects(input_pkl_base) 
    print("start") 
    for pkl_name, smpl_params in tqdm.tqdm(smplObjects): 
         
        #try: 
        fbxReadWrite = FbxReadWrite(fbx_source_path) 
        fbxReadWrite.addAnimation(pkl_name, smpl_params) 
        fbxReadWrite.writeFbx(output_base, pkl_name) 
        print("done") 
        #except Exception as e: 
        #    fbxReadWrite.destroy() 
        #    print ("- - Distroy") 
        #    raise e 
            #pass 
        #finally: 
        fbxReadWrite.destroy() 

Appendix B: Source code for SMPL Object 

This file is essential for the converter to work properly 

import numpy as np 
import glob 
import pickle 
import os 
from scipy.spatial.transform import Rotation as R 
#from mathutils import Matrix, Vector, Quaternion 
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from typing import Dict 
from typing import Tuple 
 
from PathFilter import PathFilter 
 
class SmplObjects(object): 
    joints = ["Pelvis" 
    ,"L_Hip" 
    ,"R_Hip" 
    ,"Spine1" 
 
    ,"L_Knee" 
    ,"R_Knee" 
    ,"Spine2" 
 
    ,"L_Ankle" 
    ,"R_Ankle" 
    ,"Spine3" 
 
    ,"L_Foot" 
    ,"R_Foot" 
    ,"Neck" 
 
    ,"L_Collar" 
    ,"R_Collar" 
 
    ,"Head" 
    ,"L_Shoulder" 
    ,"R_Shoulder" 
 
    ,"L_Elbow" 
    ,"R_Elbow" 
    ,"L_Wrist" 
    ,"R_Wrist" 
    ,"L_Hand" 
    ,"R_Hand"] 
 
    def __init__(self, read_path): 
        self.files = {} 
 
        # For AIST naming convention 
        # paths = PathFilter.filter(read_path, 
dance_genres=["gBR"],  dance_types=["sBM"], music_IDs=["0"]) 
        paths = PathFilter.filter(read_path, dance_genres=None, dance_types=None, 
music_IDs=None) 
        for path in paths: 
            filename = path.split("/")[-1] 
 
            # load npy file 
            if filename.endswith(".npy"): 
                with open(path, 'rb') as f: 
                    data = np.load(f) 
                    data = np.array(data)  # (N, 225) 
                    f.close() 
                trans = data[:, 6:9] 
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                poses = data[:, 9:] 
                poses = R.from_matrix(poses.reshape(-1, 3, 
3)).as_rotvec().reshape(-1, 72) 
 
                self.files[filename] = {"smpl_poses": poses, 
                                        "smpl_trans": trans} 
 
            # load pkl file 
            else: 
                with open(path, "rb") as fp: 
                    data = pickle.load(fp) 
                self.files[filename] = {"smpl_poses": data["smpl_poses"], 
                                        "smpl_trans": data["smpl_trans"]} 
 
        self.keys = [key for key in self.files.keys()] 
    # def __init__(self, read_path): 
    #     self.files = {} 
    # 
    #     # For AIST naming convention 
    #     #paths = PathFilter.filter(read_path, 
dance_genres=["gBR"],  dance_types=["sBM"], music_IDs=["0"]) 
    #     paths = PathFilter.filter(read_path, 
dance_genres=None,  dance_types=None, music_IDs=None) 
    #     for path in paths: 
    #         filename = path.split("/")[-1] 
    #         with open(path, "rb") as fp: 
    #             data = pickle.load(fp) 
    #         self.files[filename] = {"smpl_poses":data["smpl_poses"], 
    #                                 "smpl_trans":data["smpl_trans"] / 
(data["smpl_scaling"][0]*100)} 
    #     self.keys = [key for key in self.files.keys()] 
 
    def __len__(self): 
        return len(self.keys) 
 
    def __getitem__(self, idx:int) -> Tuple[str, Dict]: 
        key = self.keys[idx] 
        return key, self.files[key] 
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