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Abstract. In the field of time series data analysis, handling missing values poses a critical and 

complex challenge. This study addresses this issue by proposing a missing value imputation 

method based on Long Short-Term Memory (LSTM) networks to enhance the accuracy and 

reliability of time series data prediction. Specifically, we selected water consumption data from 

20 different communities, which contained missing values, as our experimental dataset. Initially, 

we applied a mean imputation method to preprocess the missing data in the training set, ensuring 

data completeness and continuity. Subsequently, we constructed an LSTM model based on a 

sliding window mechanism to perform missing value predictions. The prediction results on the 

validation set yielded a Mean Squared Error (MSE) of 0.00636, indicating a high degree of 

accuracy and stability in our model’s predictive capabilities. Additionally, a detailed analysis 

and prediction of individual feature values yielded an MSE of 0.40129, further validating the 

effectiveness of the LSTM model in addressing the missing value problem in time series data. 

Keywords: Time series analysis, Long Short-Term Memory (LSTM) neural networks, machine 

learning. 

1.  Introduction   

Time series forecasting [1] is a method that utilizes statistical patterns in historical observational data to 

predict trends, making it widely applicable in fields such as stock markets, healthcare, and meteorology 

[2]. However, due to the instability of data collection equipment or other disruptive factors, time series 

data are often incomplete, which makes it challenging for predictive models to capture data variations 

and distributional characteristics, thereby affecting forecasting accuracy. Consequently, addressing 

missing values in time series data is essential for improving the performance of predictive models and 

holds significant importance. 

Traditional methods for handling missing values can generally be divided into deletion methods and 

imputation methods. The deletion method [3] removes missing samples when their impact on the dataset 

is minimal. For example, Enders [4] proposed listwise deletion (complete case analysis) for scenarios 

where data are missing completely at random (MCAR) with a large sample size and minimal missing 

data, simplifying the process and avoiding spurious data. Deletion approaches typically include right-

censoring and interval-censoring. For right-censored data, literature [5] provides a classification support 

vector machine based on error consistency in a generalized probabilistic measure, applying it to estimate 

mean, median, quantile, and classification issues for censored data. For interval-censored data, literature 

[6] introduced a Bayesian nonparametric approach for probability fitting. In the case of left-truncated, 
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right-censored data, literature [7] constructed an empirical estimator for quantile differences and 

proposed a kernel smoothing estimator for quantile differences. Although these methods are effective in 

some cases, they can lead to partial data becoming entirely missing, hindering the model’s ability to 

identify intrinsic features and trends in the data. Imputation methods statistically analyze the dataset and 

fill in missing values based on certain characteristics (such as mean or median) [8]. 

Most traditional methods for handling missing data focus on sample inference, Bayesian inference, 

and likelihood inference [7]. Bayesian and likelihood inference are more commonly applied in practical 

data. When evaluating long-term project performance with randomly missing data and observational 

data also missing at random, sample sampling can be used to estimate the dataset’s distribution 

parameters, ignoring the missing mechanism. For randomly missing data where the parameters of the 

missing mechanism differ from the dataset distribution parameters, Bayesian inference and likelihood 

inference can also disregard the missing mechanism. Literature [9] explores non-random missing issues, 

including non-ignorable non-response and missingness, often referred to as informative missingness. 

Recently, with the rapid development of machine learning, these techniques have demonstrated 

significant advantages in handling missing values. Machine learning methods can extract underlying 

information and distribution characteristics from data, leading to their widespread application in missing 

value imputation across various fields. By applying algorithms such as Support Vector Machine (SVM), 

Random Forest (RF), and Decision Tree (DT), researchers capture the complexity and diversity in the 

data [10]. A comparative study of RF and neural networks in data imputation showed that RF provides 

higher accuracy and faster computation for categorical missing data. Deb et al. [11] proposed a Decision 

Tree-based Stochastic Missing Imputation (DSMI) method, examining imputation rules for missing 

values. Zhao Lei et al. [12] used well-logging data with SVM for missing data imputation, finding that 

SVM outperformed regression methods with small sample sizes. Zhang Chan [13] proposed an SVM-

based missing value imputation method, which demonstrated higher accuracy and better noise resistance 

compared to mean imputation and Decision Tree regression methods. Moreover, machine learning 

techniques allow for considerations of data uncertainty and complexity when imputing missing values. 

For instance, some methods utilize probabilistic models to evaluate the credibility of imputed values, 

providing data analysts with additional information. This approach not only provides point estimates for 

missing values but also offers confidence intervals for the imputed values, which is valuable for data 

interpretation and further analysis. 

Based on the above analysis, we propose an LSTM-based method for handling missing values in 

time series data. By leveraging the model’s strong spatiotemporal predictive capabilities, we aim to 

accurately predict missing values to ensure the validity and completeness of the overall time series data. 

2.  Research Methodology 

2.1.  Mean Prediction 

A common approach for handling missing values is to fill them in based on the mean value of the series 

with missing values. First, the mean is calculated from the known data: 

 𝑥̅ =
1

𝑛
(𝑥1 + 𝑥2 + 𝑥3 + ⋯ ⋯ + 𝑥𝑛), 𝑥1, 𝑥2, ⋯ ⋯ , 𝑥𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑓𝑖𝑥𝑒𝑑 𝑑𝑎𝑡𝑎 (2.1) 

Then, the calculated mean is directly used to fill in the missing data. 

2.2.  RNN-Based Methods 

For a given sequence 𝑋 = (𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛)𝑋 = (𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛), a standard RNN [14] model 

can generate a hidden layer sequence ℎ = (ℎ1, ℎ2, … … , ℎ𝑛)ℎ = (ℎ1, ℎ2, … … , ℎ𝑛)  and an output 

sequence 𝑦 = (𝑦1, 𝑦2, … … , 𝑦𝑛)𝑦 = (𝑦1, 𝑦2, … … , 𝑦𝑛)  through the iterative calculations shown in 

Equations (2.2) to (2.3): 

 ℎ𝑡 = 𝑓𝑎(𝑊𝑥ℎ𝑥𝑖 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)ℎ𝑡 = 𝑓𝑎(𝑊𝑥ℎ𝑥𝑖 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (2.2) 

 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (2.3) 
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where 𝑊𝑊 represents the weight matrix, 𝑏𝑏 the bias vector, and 𝑓𝑎𝑓𝑎 the activation function. The 

subscript t indicates the time step. 

2.3.  LSTM 

Although RNNs can effectively handle nonlinear time series, they still face two key challenges [15]: (1) 

due to the vanishing and exploding gradient problems, RNNs are unable to process time series with 

long-term dependencies; (2) training an RNN model requires a predetermined delay window length, 

which is often challenging to optimize automatically in real-world applications. This led to the 

development of the LSTM model. The LSTM replaces the RNN hidden layer cells with LSTM cells, 

endowing the model with long-term memory capabilities. The most commonly used LSTM cell structure 

today can be forward-calculated as follows: 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (2.4) 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (2.5) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ( 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ( 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (2.6) 

 𝜊𝑡 = 𝜎(𝑊𝑥𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)𝜊𝑡 = 𝜎(𝑊𝑥𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (2.7) 

 ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ( 𝑐𝑖)ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ( 𝑐𝑖) (2.8) 

where i, f, c, and o represent the input gate, forget gate, cell state, and output gate, respectively. W and 

b denote the respective weight matrices and bias terms, while σ and tanh represent the sigmoid and 

hyperbolic tangent activation functions. The LSTM model’s training process utilizes the Back 

Propagation Through Time (BPTT) algorithm, which is similar in principle to the classical Back 

Propagation (BP) algorithm. The process generally involves four steps: (1) calculating the output of each 

LSTM cell based on the forward calculation method; (2) performing backpropagation for each LSTM 

cell’s error terms, both temporally and across network layers; (3) computing the gradient of each weight 

based on the error terms; and (4) updating the weights using a gradient-based optimization algorithm. 

In the input layer, a continuous segment of the data, 𝑋0 = {𝑥1, 𝑥2, … … 𝑥𝑛}𝑋0 = {𝑥1, 𝑥2, … … 𝑥𝑛}, 

without missing values is divided into the training set 𝑋𝑡𝑟 = {𝑥1, 𝑥2, … … 𝑥𝑚}𝑋𝑡𝑟 = {𝑥1, 𝑥2, … … 𝑥𝑚}, 

the test set 𝑋𝑡𝑒 = {𝑥𝑚 + 1, 𝑥𝑚, … … 𝑥𝑝}𝑋𝑡𝑒 = {𝑥𝑚 + 1, 𝑥𝑚, … … 𝑥𝑝} , and the validation set 𝑋𝑣𝑒 =

{𝑥𝑝+1, 𝑥𝑝+2, … … 𝑥𝑛}𝑋𝑣𝑒 = {𝑥𝑝+1, 𝑥𝑝+2, … … 𝑥𝑛}, where 𝑚 < 𝑝 < 𝑛 𝑎𝑛𝑑 𝑚, 𝑝, 𝑛 ∈ 𝑁. 

Set the sliding window length as L, and divide the normalized training set into multiple windows. 

The input for each window is 𝑋 = {𝑋1, 𝑋2, ⋯ ⋯ , 𝑋𝐿}𝑋𝑝 = {𝑥𝑝
′ , 𝑥𝑝+1

′ . … … , 𝑥𝑚−𝐿+𝑝−1
′ },1 ≤ 𝑝 ≤

𝐿; 𝑝, 𝐿 ∈ 𝑁𝑋𝑝 = {𝑥𝑝
′ , 𝑥𝑝+1

′ . … … , 𝑥𝑚−𝐿+𝑝−1
′ },1 ≤ 𝑝 ≤ 𝐿; 𝑝, 𝐿 ∈ 𝑁 , and the output is Y =

{𝑌1, 𝑌2, ⋯ ⋯ , 𝑌𝐿}𝑌𝑝 = {𝑥𝑝+1
′ , 𝑥𝑝+2

′ , … … , 𝑥𝑚−𝑙+𝑝
′ }𝑌𝑝 = {𝑥𝑝+1

′ , 𝑥𝑝+2
′ , … … , 𝑥𝑚−𝑙+𝑝

′ } . The output of the 

hidden layer is: 

 𝑝 = {𝑝1, 𝑝2, … … 𝑝𝐿}𝑝 = {𝑝1, 𝑝2, … … 𝑝𝐿} (2.9) 

 𝑝𝑝 = 𝐿𝑆𝑇𝑀（X𝑝, c𝑝−1, H𝑝−1）𝑝𝑝 = 𝐿𝑆𝑇𝑀（X𝑝, c𝑝−1, H𝑝−1） (2.10) 

where Cp-1 and Hp-1 are the previous LSTM cell’s state and output, respectively. Assuming the cell 

state vector size is Sstate, both vectors Cp-1 and Hp-1 have a size of Sstate. 

 𝑙𝑜𝑠𝑠 = ∑
(𝑝𝑖−𝑦𝑖)2

[𝐿(𝑚−𝐿)]

𝐿(𝑚−𝐿)
𝑖=1 𝑙𝑜𝑠𝑠 = ∑

(𝑝𝑖−𝑦𝑖)2

[𝐿(𝑚−𝐿)]

𝐿(𝑚−𝐿)
𝑖=1  (2.11) 

Using the validation set, the mean squared error (MSE) is calculated as follows: 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑛 − 𝑦𝑛)2𝑁

𝑛=1 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑛 − 𝑦𝑛)2𝑁

𝑛=1  (2.12) 
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Figure 1. Network Structure 

3.  Experimental Validation 

3.1.  Dataset and Preprocessing 

The dataset selected for this experiment includes water consumption data from 20 different zones, 

labeled from flow1 to flow20, all recorded hourly over the same period. The dataset structure consists 

of multiple columns, where the leftmost column represents time (one data point per hour), and the last 

column serves as a label, distinguishing different parts of the dataset. 

Specifically, the dataset labels are categorized as follows: 

Train: This label indicates data used to train the model. The water consumption data in this section 

is discretely distributed, meaning that each time point’s water usage is given as an independent value, 

potentially with fluctuations or jumps. 

Test1, test2, test3, test4: These labels identify four different test sets, where the water consumption 

data is provided in a continuous distribution format. This implies that in these test sets, water usage data 

may show smoother or more continuous variation, lacking the discrete jumps seen in the training set. 

It is worth noting that the training set (train) includes not only complete data points but also some 

missing values. In contrast, the test sets (test1 to test4) display a unique structure, with large sections of 

blank values (i.e., missing data across multiple consecutive time points). 

In this study, we employed a combination of data preprocessing and machine learning models to 

handle and predict the missing values in the dataset. The specific steps are as follows: 

The entire dataset was divided into four subsets, each containing both test and train labels. Initially, 

we addressed the missing values in the train label by using mean imputation to fill in these gaps. In each 

subset, features were extracted based on the training set, and a sliding window of length 5 was 

constructed. To ensure reproducibility, a fixed random seed was used to shuffle the data, creating the 

training, test, and validation sets. 

3.2.  LSTM Model Construction and Evaluation 

We constructed a Long Short-Term Memory (LSTM) model and evaluated its accuracy by comparing 

the predictions on the validation set with the actual data, using the Mean Squared Error (MSE) as the 

evaluation metric. This process allowed us to assess the model’s accuracy in forecasting data. 
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3.3.  Single Feature Prediction 

In addition to processing the entire dataset, we conducted an analysis on individual features. We selected 

a continuous interval without missing values and divided it into training, test, and validation sets. We 

then created a sliding window and trained the LSTM model. By comparing the test data with the model’s 

predictions, we calculated the MSE again to evaluate the model’s performance in predicting missing 

values for individual features. 

For the first single feature, we obtained an MSE of 0.401296742814858. 

In summary, our experimental results indicate that effective data preprocessing combined with the 

selection of an appropriate machine learning model can significantly improve the accuracy of missing 

data predictions in the dataset. Due to its powerful capabilities in time series analysis, the LSTM model 

proved to be the optimal choice for missing value prediction in this study. 

Table 1. Comparison of missing data predication performances 

 Average of First Three Days Fill LSTM Fill Single Feature LSTM Fill  

MSE 0.545171011 0.006369464 0.401296743  

MAE 0.62440507 0.032150504 0.158301862  

4.  Conclusion 

This study systematically demonstrates the effectiveness and accuracy of a time series missing data 

prediction method based on the Long Short-Term Memory (LSTM) model through in-depth analysis 

and experimental validation. Our approach not only learns from training data with missing values but 

also efficiently predicts in test sets containing continuous missing segments. By combining mean 

imputation with a sliding window mechanism, the model fully leverages the intrinsic temporal 

dependencies in time series data, significantly enhancing prediction accuracy. 

Experimental results indicate that our model performs exceptionally across multiple test sets, with 

low Mean Squared Error (MSE) further affirming its stability and reliability. Additionally, this study 

explores the model’s predictive capability on individual feature dimensions, demonstrating that the 

LSTM model is not only suitable for predicting missing values across entire datasets but also excels in 

single-feature predictions. This finding underscores that the LSTM model is effective for handling both 

complex, multidimensional data and individual feature missing values with high accuracy. 

Compared to previous work, our method shows improvements in the following areas: 

Missing Value Imputation Strategy: Traditional methods largely rely on linear interpolation or simple 

mean imputation, while our approach enhances temporal dependency capture through the introduction 

of a sliding window mechanism. 

Handling of Continuous Missing Segments: Some traditional models experience significant 

performance degradation with extended missing intervals, whereas our model maintains stable 

prediction performance even under these conditions. 

Single-Feature Prediction Capability: Unlike models requiring multi-feature support, our method 

demonstrates efficient prediction capability with single-feature data, showcasing its advantages in low-

dimensional data scenarios. 

Future research can build upon this study to explore more complex deep learning architectures and 

optimization algorithms, such as incorporating Transformer architectures or attention mechanisms, to 

further improve prediction accuracy and computational efficiency. Moreover, tailored model 

optimization strategies for various types of time series data (e.g., non-stationary series) can be developed 

to expand the application scope of this method. 
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