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Abstract: Hyperspectral imagery (HSI) classification is essential for remote sensing analysis, 

utilizing various image bands. Convolutional Neural Networks (CNNs) are prevalent in deep 

learning for visual data processing, with recent applications in HSI classification primarily 

employing 2D and 3D CNNs. However, 3D CNNs demand significant computational 

resources due to their complexity. This paper introduces a two-branch spatial-spectral joint 

convolutional neural network (SSDB) leveraging an attention mechanism for HSI 

classification. SSDB effectively extracts spectral and spatial information while reducing 

model complexity, resulting in a lightweight alternative to 3D CNNs. In this comprehensive 

hyperspectral image (HSI) classification experiments utilizing the Indian Pines, Pavia 

University, and Salinas Scene datasets, we benchmarked our findings against leading-edge 

handcrafted and end-to-end deep learning methodologies, demonstrating exceptionally 

commendable performance with the SSDB approach. 

Keywords: Hyperspectral Imagery (HSI), Convolutional Neural Networks (CNN), Attention 

Mechanism. 

1. Introduction 

Spectrogram With the development of hyperspectral remote sensing technology, new hyperspectral 

sensors are able to collect continuous images with both spectral and spatial features [1]. Hyperspectral 

imagery is abundant in characteristics, encompassing both spectral and spatial dimensions. 

Consequently, these images find extensive applications across various fields such as agriculture, 

environmental surveillance, urban development, and military reconnaissance [2]. Because 

hyperspectral images have the attribute of three-dimensional stereo images, the combined spatial and 

spectral features can be fully utilized for image classification in order to obtain better feature 

information [3]. However, while the hyperspectral image describes rich feature details, there is also 

a high degree of correlation between the data, which leads to a large amount of data redundancy [4] 

and increases the computational complexity. Reducing redundancy in spectral data and extracting 

combined spatial and temporal features of hyperspectral images have emerged as the foremost 

objectives in the classification of hyperspectral images [5, 6]. In the field of hyperspectral image 

classification, traditional methods such as Random Forest (RF) [7] and Support Vector Machine 

(SVM) [8] often fail to achieve high accuracy in classifying spectral features, and traditional methods 
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often fail to accurately extract spatial and spectral features in hyperspectral images. Moreover, these 

feature extraction techniques require manual configuration based on prior knowledge. The feature 

information obtained by setting these parameters is typically limited to distinguishing specific objects, 

resulting in a lack of flexibility and hindering further enhancement of classification performance. 

In contemporary research, classification techniques employing Convolutional Neural Networks 

(CNNs) have gained widespread application. Nonetheless, prevailing hyperspectral classification 

approaches predominantly utilize single-branch processing, which inadequately addresses the issue 

of information redundancy in images. Furthermore, because hyperspectral classification neural 

networks often have deep depth, the amount of neural network parameters is too large, which leads 

to slow computation and consumes a large amount of computational resources. 

In order to solve the above problems, this paper proposes a new dual-channel CNN (convolutional 

neural networks) convolutional approach. The method first takes the input hyperspectral image 

information, extracts the spectral features as well as the spatial features separately, and merges them 

together after various convolutions to carry out the extracted spectral information. Compared with 

other 2D/3D-CNN models, the proposed model involves fewer parameters and has a relatively high 

computation rate, which can achieve higher classification accuracy. The modeling experiments in this 

paper compare several canonical 

The proposed HSIC methodologies demonstrate superior performance in experimental and 

comparative analyses, surpassing other evaluated techniques. The key contributions of this paper are 

outlined as follows: 

(1) The design of dual- -brunch- Based Spatio- Spectral Integrated network, which adds an 

attention mechanism to classify hyperspectral images through a dual-branch network. 

(2) To ensure spatial consistency in hyperspectral image classification, we integrated both channel 

and spatial attention mechanisms into a dual-branch network. By aggregating the network's outputs, 

it derived features that maintain the spatial coherence of the image. 

(3) Comparison experiments between this network and other networks are designed. It is 

concluded that this network has better performance in hyperspectral classification problem. 

2. Previous Research 

2.1. Conventional categorization techniques 

SVM effectively identifies spectral features for high-precision classification by selecting suitable 

kernel functions and parameters. Huang addressed the issues of multiple covariance in spectral data 

of organic pollutants and overlapping spectral peaks by developing a method for discriminating 

organic pollutants in drinking water using UV-vis spectra, based on the successive projection 

algorithm (SPA) and multiclassification support vector machine (M-SVM). Kaige Yang introduced 

a novel subspace integration method to optimize subspace retention in the SVM integrated system for 

hyperspectral false classification. Experiments indicate that this method outperforms random 

subspace approaches in classification performance. [10]. 

In hyperspectral imaging, each pixel holds extensive spectral data, and random forests effectively 

leverage this to build robust classification models, excelling in nonlinear and noisy contexts. Tong, F 

introduced joint regions that merge fixed-size patches with shape-adaptive hyperpixels for enhanced 

spatial accuracy. The classification model's RF is substituted with Extreme Random Forest (EF) to 

mitigate overfitting. Experiments on three HSIs demonstrate that the proposed SSDRF yields 

commendable classification outcomes, surpassing the patch-based DCDRF.[11] 

The K-Nearest Neighbor (KNN) algorithm posits that a sample belongs to the category most 

represented among its k nearest neighbors in feature space. TU Bing introduces a recursive filtering 

(RF) method combined with KNN for hyperspectral image classification, calculating Euclidean 
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distances between test and training samples to determine category membership based on the k 

smallest distances. Huanglei presents a similarity measure using Weighted Spatial-Spectral Distance 

(WSSD) for KNN, developing a new classification algorithm that leverages hyperspectral image 

properties. This approach incorporates spatial windows and spectral factors to extract spatial and 

spectral information, enhancing similarity metrics through spatial nearest-neighbor reconstruction. 

[12]. 

2.2. Deep Learning Methods 

Due to the limitations of traditional models in classification performance and adaptability, deep 

learning, particularly CNNs, has advanced hyperspectral image classification by effectively 

extracting spatial-spectral features. Rujun Chen introduced a method utilizing superpixel 

segmentation and CNN, integrating 2D segmentation with CNN to enhance classification efficiency 

[13].S. K. Roy introduced the HybridSN network, integrating 2D segmentation with CNN to enhance 

classification efficiency. Rujun Chen developed a hyperspectral image classification method utilizing 

superpixel segmentation and CNN to improve spatial-spectral feature utilization and classification 

performance. The HybridSN network leverages both 2D and 3D convolutions, employing 3D 

convolution initially, followed by 2D convolution, and ultimately connecting to classifiers. This 

approach maximizes spectral-spatial feature extraction while mitigating the complexity associated 

with exclusive 3D convolution use.[14]. Ben Hamida presents a novel 3D deep learning approach for 

integrated spectral and spatial data processing. The proposed scheme is assessed through experiments 

on established hyperspectral datasets, demonstrating superior classification performance compared 

to existing methods while reducing computational costs. [15]. A deep learning based classification 

method is proposed which builds high-level features hierarchically in an automated manner [16].Wei 

X P In order to fully utilize the feature extraction capability of CNN and the discriminative capability 

of LBP features, a two-channel CNN and LBP combined hyperspectral image classification method 

is proposed [17]. 

3. Net structure 

3.1. Net structure 

In the hyperspectral classification process, it utilize a dual-branch network structure to effectively 

extract spectral and spatial features from hyperspectral images. Each branch operates independently, 

and the integration of 1D CNN and 2D CNN optimizes computational efficiency. This paper 

introduces a dual-branch Spatio-Spectral Integrated Network, comprising a spectral feature extraction 

branch, a spatial feature extraction branch, classifiers, and a Dropout layer to mitigate overfitting. 

 

Figure 1: The overall network structure 
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Figure 1 shows that the network consists of a spectral feature extraction branch, a spatial feature 

extraction branch, and classifiers, and a Dropout layer is added to the network to mitigate the 

overfitting problem 

In our network, we employ convolutional neural networks to extract spectral and spatial features 

from hyperspectral images. We define the input matrix size as w, the convolution kernel size as k, the 

stride as s, and the number of zero-padding layers as p. Consequently, the size of the resulting feature 

map after convolution is determined as follows: 

 W′ =
(w+2p−k)

s
+ 1 (1) 

After extracting the feature maps, we flatten each one and splice the maps from both modules to 

integrate spectral and spatial features, enhancing the model's flexibility and expressiveness. Finally, 

we apply the Softmax function for classifying the feature classes in the hyperspectral image, as 

detailed in the following formulas: 

 P(y|x) =
eℎ(x,yi)

∑ eℎ(x,yi)n
j=1

 (2) 

3.2. Spectral feature extraction Brunch  

In the channel feature extraction module, the input hyperspectral image undergoes three convolutions 

with kernel sizes of 1x1x32, 1x1x48, and 1x1x120. Each convolution involves sliding the kernel over 

the input sequence and calculating the inner product at each position. For each position ì, the inner 

product of the kernel with the subsequence xi+k-1 yields a scalar value. The output sequence element 

is defined by the activation function, the kernel weights, the input sequence, the bias term, and the 

kernel size. 

 y[i] =  f((∑ wi
k−1
i=0 × x[i+ j]) + b) (3) 

Each convolutional layer adds Batch Normalization batch regularization to improve the model 

generalization ability, and adds ReLU, a nonlinear activation function, where the nonlinearity allows 

the network to learn more complex functions. After convolution, channel attention mechanism is 

introduced with constant channel dimension and compressed spatial dimension. This module focuses 

on the channel in hyperspectral will input feature map through two parallel MaxPool layer and 

AvgPool layer, change the feature map from C*H*W to the size of C*1*1, and then through the MLP 

module, in which it first compresses the number of channels to the original 
1

r
 times, and then expands 

to the original number of channels, and then through the ReLU activation function to get the two 

activated results. These two output results are summed element by element, and the specific 

expression is as follows: 

 Mc(F) = σ(MLP(MaxPool(F)) +MLP(AvgPool(F))) (4) 

After getting the result, then through a sigmoid activation function to get the output result of 

Channel Attention and then multiply this output result by the original figure, change back to the size 

of C*H*W. Then multiply this output by the original graph and change it back to the size of C*H*W. 

The network structure of the overall module is shown in Figure2: 
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Figure 2: Spectral feature extraction Bruncℎ  

3.3. Spatial feature extraction Brunch 

In this module, we first use 2-dimensional convolution to process the spatial information of 

hyperspectral images with convolution kernel sizes of 10*10*32, 9*9*48, and 8*8*120 respectively, 

Here if we set the input layer to be Win × Hin × Din,The number of filters is k,The convolution 

kernel dimension in filters is w × ℎ,The slide step is s,padding is p,output layer is Wout × Hout ×
Dout,The arithmetic relationships are as follows: 

 

{
 

 Wout =
(W

in
+2p−w)

s
+ 1

Hout =
(Hin+2p−w)

s
+ 1

Dout = k

 (5) 

Subsequently, a spatial attention mechanism is incorporated to maintain the spatial dimension 

while compressing the channel dimension. The outputs from the convolution operation are derived 

through max pooling and average pooling, resulting in two feature maps. 

 Then the two feature maps are spliced and turned into a 1 channel feature map by 7×7 

convolution, which is calculated as follows: 

 Mc(F) = σ(f7×7([(MaxPool(F)); f7×7(AvgPool(F))]) (6) 

The results undergo a sigmoid function to generate the spatial attention feature map, which is then 

multiplied by the original map to revert to C*H*W dimensions. The network architecture of this 

module is illustrated in Figure 3. 

 

Figure 3: Spatial feature extraction Bruncℎ 
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4. Evaluation Process 

4.1. Dataset 

Three publicly accessible datasets—Indian Pines (IP), Pavia University (PU), and Salinas (SA)—

were chosen to evaluate the effectiveness of the proposed algorithm. The IP dataset, captured by 

NASA's AVIRIS at the Indian Pine Proving Ground in 1992, encompasses 16 distinct classes. It 

comprises a 145×145 pixel image with a spatial resolution of 20 meters, a spectral resolution of 10 

nanometers, and spans a spectral range from 400 to 2,500 nanometers across 224 bands. After 

excluding 24 bands compromised by noise and water absorption, 200 bands were employed for the 

experiment. The PU dataset, obtained by the Reflectance Optical System Imaging Spectrometer at 

the University of Pavia in 2002, includes 9 classes, with an image dimension of 610×340 pixels, a 

spatial resolution of 1.3 meters, and spectral coverage from 430 to 860 nanometers across 115 bands, 

ultimately retaining 103 bands after excluding 12 bands affected by noise. The SA dataset, acquired 

by AVIRIS in 1992 in Salinas Valley, California, comprises 16 classes, with a spatial dimension of 

512×217 pixels and a resolution of 3.7 meters. The original image contained 224 bands, but 20 bands 

affected by water absorption were removed, resulting in 204 bands for analysis. 

4.2. Experimental environment and parameter settings 

Hardware environment: Windows 11 operating system, computer model Intel(R) Core(TM) i7-

14700K @3.60GHz 3.60 GHz+32.0GB, graphics card model NVIDA GeForce RTX 4060ti. 

Parameter settings: batch size is set to 128; the number of training rounds (epochs) is set to 200; 

the ratio of the training set to the test set is 10%; all are randomly selected, and the state of the random 

number is set to 345; the window size is set to 25; and the learning rate is set to 0.0001.  

4.3. Categorized evaluation indicators 

The evaluation metrics employed for classification included overall accuracy (OA), average accuracy 

(AA), and the Kappa coefficient. 

OA represents the ratio of the number of correctly categorized pixels in an image to the overall 

number of pixels, which is calculated as follows: 

 OA =
1

N
∑ xii
r
1  (7) 

AA denotes the average value of classification accuracy, which is calculated as follows 

 AA =
(

TP

TP+FN
+

TN

FP+TN
)

2
 (8) 

The Kappa coefficient is a measure of consistency that avoids the effects of imbalances in the data 

categories, and is calculated as follows: 

 P0 =
∑ Ti
c
i=1

n
 (9) 

 Pe =
∑ ai×bi
c
i=1

n2
 (10) 

 Kappe =
P0−Pe

1−Pe
 (11) 
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4.4. Comparison Experiment 

In evaluating the Hyperspectral Image (HSI) classification performance, we employed three key 

metrics: Overall Accuracy (OA), Average Accuracy (AA), and Kappa Coefficient. OA quantifies the 

ratio of correctly classified samples to the total sample population, while AA represents the mean 

accuracy across all classification categories. The Kappa Coefficient serves as a statistical measure 

that quantifies the agreement between the predicted classification maps and ground-truth references. 

This paper benchmarked our proposed Spectral-Spatial Deep Belief (SSDB) model against 

established supervised learning algorithms, including Support Vector Machine (SVM), Random 

Forest (RF), k-Nearest Neighbors (KNN), three-dimensional Convolutional Neural Network (3D-

CNN), and Hybrid Spectral Network (HybridSN). Table1 presents the comparative analysis of these 

classification methodologies across three standard datasets: Indian Pines (IP), Pavia University (PU), 

and Salinas (SA). 

Table 1: The classification accuracies, expressed as percentages, achieved by both the proposed and 

state-of-the-art methodologies on a training dataset comprising 10% of the total data. 

Methods 
IP PU SA 

OA(%) Kappe(%) AA(%) OA(%) Kappe(%) AA(%) OA(%) Kappe(%) AA(%) 

SVM 73.55 68.24 57.26 94.34 91.93 91.77 91.22 90.12 94.73 

RF 77.36 73.32 62.34 85.43 78.87 78.17 92.24 90.57 95.01 

KNN 59.32 52.60 48.70 83.41 76.69 79.83 86.32 84.95 91.58 

3DCNN 91.10 89.98 96.41 96.54 95.53 97.59 85.00 83.20 89.63 

HybridSN 98.83 99.01 98.93 99.98 99.98 99.91 99.98 99.98 99.98 

SSDB 99.08 99.12 99.63 99.91 99.92 99.95 99.98 99.95 99.98 

 

SSDB outperforms traditional classification methods and shows superior results compared to 3D 

CNN on the IP dataset, slightly exceeding HybridSN. While its performance on the PU and SA 

datasets is not as strong as HybridSN, it still achieves high classification accuracy. Additionally, 

SSDB's training data volume is reduced to 3,393,409 from HybridSN's 5,122,176, resulting in a more 

lightweight network. 

The subsequent illustration presents the outcomes of various classification algorithms applied to 

the categorized IP dataset depicted in Figure 4. 

 

Figure 4: The result of IP 
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4.5. Ablation Experiment 

To assess the efficacy of our proposed network and attention mechanism, we conduct a comparative 

analysis between the single branch network and the network integrated with the CBAM attention 

mechanism. The findings are presented in Table 2 below: 

Table 2: Compare the accuracy of different network structures and attention mechanisms 

Methods 
ACC(%) 

Single Dual CBAM SSDB 

√ × × × 90.24 

× √ × × 92.35 

× × × √ 99.08 

√ × √ × 94,77 

× √ √ × 95.64 

 

The analysis reveals that the classification accuracy of the single-branch network is lower than 

that of the two-branch network, irrespective of the presence of the attention mechanism. Additionally, 

the two-branch network incorporating CBAM does not surpass SSDB, indicating that our attention 

mechanism is more proficient in hyperspectral classification. 

4.6. Convergence experiment 

The proposed method is applied to IP, SA, and UP datasets, with results analyzed. Loss curves during 

training are presented in Figure 5. The IP dataset converges after approximately 50 epochs, while the 

SA and UP datasets, being easier to categorize, converge after about 30 epochs. A lower loss value 

indicates that the model's predictions are closer to the true values. 

 

Figure 5: The accuracy and loss on IP dataset 

5. Conclusion 

In response to the challenges of insufficient feature extraction and overlapping fine details in 

hyperspectral image data, I introduce a dual-channel hybrid convolutional classification method 

incorporating an attention mechanism. This model leverages dual branches to comprehensively 

analyze spatial and spectral information, optimizing feature extraction while minimizing redundancy. 

The attention mechanism assigns weights to spectral and spatial dimensions to enhance feature 

differentiation, thereby improving the distinction between background and target, and producing 

classification results through a fully connected layer. This method effectively harnesses the full 

spectrum of hyperspectral data features and enhances model generalization. Experimental findings 

demonstrate that the dual-branch neural network surpasses single-branch models, validating its 

feasibility and robustness. Nonetheless, further investigation is required to extract deeper spectral and 
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spatial features, refine network parameters, reduce computational complexity, and integrate advanced 

techniques such as band selection and data augmentation to advance hyperspectral image 

classification. 
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