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Abstract: In recent years, significant advancements have been made in robotics, yet 

challenges remain in navigation, particularly for autonomous vehicles and bipedal robots. 

This paper provides a comprehensive review of three critical components in robotic 

navigation: YOLO neural networks, depth cameras, and A* path planning. Existing studies 

often address these aspects independently, lacking an integrated approach. Here, we 

systematically summarize and analyze the effectiveness of these techniques in navigation 

tasks. Through a literature review of recent publications, we compare and categorize various 

methods to assess trends in YOLO research and explore potential for integrated research in 

navigation. Furthermore, we analyze the strengths and limitations of each method in dynamic 

environments. The findings suggest that while YOLO and depth camera-based systems excel 

in real-time object detection and spatial awareness, they face challenges related to light 

sensitivity and high computational demands. Future research directions are proposed to 

enhance adaptability in complex environments, improve efficiency, and support cost-

effective navigation solutions in robotics. 
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1. Introduction 

In recent years, the field of robotic navigation has developed rapidly, not only in the domain of 

autonomous vehicles but also in areas like robotic walking and drone recognition. For example, Tesla 

has launched the Autopilot assisted driving feature. Although the current models are equipped with 

the necessary hardware for autonomous driving, full self-driving has not yet been achieved. In the 

field of high-performance robots, Unitree Robotics has developed the Unitree G1, which integrates 

an intelligent vision system with powerful AI algorithms, allowing G1 to continuously evolve to adapt 

to diverse tasks and environments. However, due to the immature software ecosystem, G1's 

navigation and operational capabilities in complex or dynamic environments still require further 

optimization and validation. In the field of drone recognition, DJI drones have also made significant 

advancements by combining multiple sensor systems to capture real-time environmental images and 

process them to achieve high accuracy in obstacle avoidance and object recognition. Robotic 

navigation involves multiple steps, including depth camera recognition, neural network computation, 

and path planning, with each step using different methods that exhibit significant efficiency 

differences in recognizing and responding to different objects [1]. Therefore, finding a solution that 

can effectively integrate these technologies is crucial for achieving efficient autonomous navigation. 

Depth cameras provide rich spatial information, helping robots understand their surroundings. A* 
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path planning is widely used to find the shortest path between points in a known environment, while 

the YOLO algorithm is a powerful real-time object detection method that enables robots to quickly 

recognize and respond to nearby objects [2]. Although these technologies each have unique 

advantages, they have mostly developed independently, which limits their potential due to a lack of 

systematic integration. For instance, depth camera image analysis is effective for detailed mapping 

and obstacle detection, but it struggles in environments with complex lighting conditions. A* path 

planning is a powerful path optimization algorithm but requires a well-defined map, which is 

challenging to obtain in dynamic environments. YOLO 3D detection excels in identifying objects but 

faces challenges in maintaining accuracy when objects are partially obscured or moving rapidly. This 

paper aims to systematically summarize and discuss the effectiveness of depth cameras, A* path 

planning, and YOLO neural networks in robotic navigation while exploring potential integrated 

research directions in the future. The goal is not only to evaluate the strengths and limitations of each 

method but also to explore how they can complement one another to address current challenges in 

robotic navigation. This paper first introduces the background. It then discusses the current status and 

research progress of depth cameras, A* path planning, and YOLO neural networks in robotic 

navigation. Following that, it analyzes the advantages and disadvantages of these technologies in both 

independent and integrated applications, with a comparative analysis based on literature reviews and 

experimental data. Finally, the paper proposes future research directions and integrated application 

strategies to enhance the performance and adaptability of robotic navigation systems in complex 

dynamic environments. 

2. Literature Review 

2.1. Path Planning 

Path planning plays a crucial role in fields such as robotic navigation, autonomous driving, and drone 

control. The purpose of path planning is to find an optimal path from a starting point to a destination 

for a robot, autonomous vehicle, or drone while avoiding obstacles. Path planning is generally divided 

into global path planning and local path planning, and what we require is real-time obstacle avoidance 

in dynamic environments, also known as local path planning. This paper focuses on the A* algorithm 

and Dijkstra’s algorithm [3]. The A* algorithm is a classic path planning algorithm based on graph 

search, which finds an optimal path from the starting point to the target point among nodes or grids 

in a graph. It combines heuristic and cost-based search methods. Dijkstra’s algorithm, also known as 

the greedy algorithm, is another path planning algorithm used to calculate the shortest path in a 

weighted graph. It only applies to non-heuristic functions. 

The A* algorithm uses a heuristic function to guide the search direction, effectively reducing the 

search space and improving search efficiency. In contrast, Dijkstra’s algorithm does not use a 

heuristic function, making it less efficient in complex spaces. Therefore, A* is more suitable for 

finding optimal paths when the target is known, while Dijkstra is better suited for single-source 

shortest path searches. The A* algorithm is widely applied in autonomous driving and drone control, 

because autonomous vehicles need to achieve real-time obstacle avoidance and find the optimal path 

in complex road environments [4]. Dijkstra’s algorithm, on the other hand, is suitable for static 

environments, such as indoor robotic navigation, like warehouse robots [5,6,7]. 

2.2. Space Detection 

Space detection is also a key technology in fields such as robotic navigation and autonomous driving, 

primarily used to identify and perceive navigable areas and critical obstacle locations in the 

environment. Its purpose is to provide robots or autonomous vehicles with a clear environmental map, 

allowing them to automatically plan paths and avoid obstacles in complex environments. The process 
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of space detection can be divided into three steps: Data Collection; Data Processing and Analysis; 

Map Generation. The models we commonly use are LiDAR Space Detection and Intel RealSense 

Camera. In autonomous driving, where LiDAR generates precise environmental models, enabling 

vehicles to recognize roads, pedestrians, and other real-world obstacles, thereby achieving accurate 

obstacle avoidance and path planning[8]. Depth-camera-based indoor robot navigation has already 

been applied in large, well-defined indoor environments, and there are also applications in augmented 

reality (AR) [9]. 

Today’s space detection technology has significant advantages in environmental modeling and 

object recognition within known environments, especially in robotic navigation and autonomous 

driving. Using technologies such as LiDAR and depth cameras, these fields can detect the 

environment and generate a complete environmental grid map, aiding in the navigation of robots and 

autonomous vehicles. However, current space detection technology still has limitations. For instance, 

LiDAR has high speed and large detection areas but is costly; time-of-flight (ToF) imaging is slower, 

has higher processing costs, covers a larger area, and has moderate accuracy; structured light has the 

highest accuracy but machine learning shows advantages in imaging area and multi-unit applications. 

Future improvements in space detection may include reducing costs and improving image accuracy. 

2.3. Vision Navigation 

Visual navigation refers to the use of cameras or other sensors to capture image data of the 

environment. Through image processing and computer vision algorithms, robots, drones, or 

autonomous vehicles are enabled to recognize paths and avoid obstacles. In 1979, J.J. Gibson 

proposed the theory of optical flow, which provided fundamental concepts for visual navigation and 

laid the foundation for computer vision [10]. David Marr’s multi-stage visual processing theory 

further solidified the basis for visual navigation by incorporating steps such as feature extraction, 

edge detection, and 3D reconstruction [11], establishing a layered approach to information processing 

for subsequent navigation systems. 

As shown in figure 1, YOLOv3 performs well overall, especially in detecting small objects. 

Although YOLOv2 achieves higher accuracy in certain large object categories, YOLOv3 

demonstrates more stability in F1 scores. As shown in figure 2, YOLOv5 provides better detection 

accuracy across most object categories, making it suitable for applications requiring higher precision, 

while YOLOv3 continues to perform stably and balanced in large object detection. 

Visual navigation has made significant progress in various fields, especially in autonomous driving, 

drone navigation, and robotics applications. Improvements in ORB-SLAM have notably enhanced 

the precision and real-time capabilities of visual navigation systems. In recent years, with the 

integration of deep learning, visual navigation has achieved more complex scene understanding and 

applications. Visual navigation now incorporates deep learning techniques such as Fast R-CNN and 

YOLO for object detection in visual navigation [13, 14]. For instance, Keisuke Tateno’s article 

“CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction” combines deep 

learning with SLAM to merge the advantages of depth prediction and SLAM, resulting in more 

precise and dense single-view scene reproduction, laying a foundation for future scenarios and 

supporting data for path planning [15]. The advantages of visual navigation technology include low 

cost, rich information, and strong adaptability. Compared to LiDAR, cameras provide more 

comprehensive environmental information, capturing details and colors of objects, which offer 

extensive visual data for path planning and object recognition. However, visual navigation is highly 

dependent on lighting conditions, with performance decreasing under low light or extreme weather 

conditions.  
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3. Results and discussions 

3.1. Advantages and Limitations of YOLO and Depth Camera-Based Navigation 

YOLO can recognize multiple targets in a very short time, making it particularly suitable for 

navigation scenarios that require rapid responses. Depth cameras provide precise distance information 

of objects within a scene, enabling the navigation system to understand the absolute position and 

three-dimensional distribution of objects.  The combination of YOLO and depth cameras enables the 

navigation system to achieve precise obstacle avoidance and path planning in complex environments. 

The rapid detection capabilities of YOLO and the real-time depth updates from depth cameras allow 

the navigation system to efficiently handle constantly changing obstacles in dynamic environments. 

The combination of these two will require us to overcome many more obstacles.Depth cameras 

perform inconsistently in complex lighting environments, such as strong or weak light, particularly 

those that rely on infrared light, which tend to perform poorly under strong illumination. The 

combination of YOLO and depth cameras demands high computational resources. Efficient operation 

of the YOLO model typically relies on robust GPU support to maintain real-time performance. YOLO 

is designed with speed in mind, adopting an end-to-end regression approach that transforms the entire 

detection process into a single regression problem. Although this method significantly increases 

detection speed, it falls short in precision compared to region proposal-based methods such as Faster 

R-CNN.  

The integration of YOLO and depth cameras in navigation systems demonstrates strong real-time 

processing capabilities, accurate depth perception, and adaptability to the environment, providing 

efficient processing methods for various navigation tasks. However, limitations still exist in 

adaptability to lighting conditions, computational demands, and precision in localization. Future 

research directions could include enhancing adaptability to ambient light, optimizing computational 

resource needs, and improving dynamic object detection and long-distance navigation to further 

enhance the system’s performance and applicability. 

3.2. Comparative analysis supported by experimental data 

According to experimental data from existing literature, significant differences exist in the 

performance of YOLOv3 and YOLOv5 across various object detection categories. Overall, YOLOv5 

exhibits higher precision and recall rates in detecting small objects (such as small vehicles and 

swimming pools), especially in complex backgrounds where YOLOv5 significantly outperforms 

Figure 1: Score Comparison between YOLOv2 

and YOLOv3 for Different Object Categories 

 

Figure 2: Score Comparison between 

YOLOv3 and YOLOv5 for Different Object 

Categories 
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YOLOv3. On the other hand, YOLOv3 has higher recall rates for larger object categories (such as 

ports and basketball courts), showing stable performance suitable for detecting larger objects. 

YOLOv5 covers a broader range in most categories, demonstrating a balanced performance in 

precision and real-time capabilities, while YOLOv3 still maintains good detection precision in some 

large object detection. These charts clearly illustrate the applicability of the two algorithms in 

different detection tasks, providing a basis for choosing the appropriate model. 

4. Future Research Direction 

4.1. D Object Detection and Tracking in Dynamic Environments 

Building on YOLO, the integration of 3D information from depth cameras can develop real-time 

detection and tracking methods suited for dynamic environments. Future research could focus on 

integrating YOLO detection capabilities with time-series data from deep learning and then utilizing 

motion models to enhance the stability of the model’s detection in dynamic environments. 

Due to the high computational costs associated with processing 3D data using YOLO and depth 

cameras, future improvements could involve refining the structure of YOLO and the data processing 

methods of depth cameras to make them more lightweight. Techniques such as optimizing 

convolutional structures and compressing model parameters could be employed to develop 

lightweight 3D detection models suitable for embedded and mobile devices. 

Depth cameras provide precise distance and depth information for path planning. Future research 

could explore how to integrate YOLO’s object detection results with depth information for automated 

path planning and obstacle avoidance. Techniques that combine three-dimensional spatial 

information with path planning algorithms aim to achieve precise navigation, obstacle avoidance, and 

dynamic path optimization. 

4.2. Visual Comparison 

To more intuitively display the advantages and disadvantages of different technologies, we have 

compiled a comparison chart (Table 1) that includes LiDAR, ToF, Structured Light, Kinect Fusion, 

and Intel RealSense depth cameras. The chart summarizes their strengths and weaknesses in terms of 

imaging speed, accuracy, and adaptability to lighting conditions. This visualization helps readers 

quickly grasp the performance differences of these technologies across various application scenarios. 

Table 1: Compare among Depth Camera 

Technology Type Imaging Speed Detection Accuracy Light Adaptability Cost DPR 

Lidar Fast  High  Strong High  High 

ToF  Medium  Medium  Weak  Medium  Medium  

Structured Light Slow High Medium Low Medium 

Kinect Fusion Fast  Medium Weak  Medium High 

Intel RealSense Medium Medium Strong Medium Medium 

5. Conclusion 

The primary aim of this article is to introduce the advantages and feasibility of a robotic navigation 

system based on YOLO and depth cameras. Based on current achievements, the system has 

demonstrated impressive rapid detection and obstacle avoidance capabilities in dynamic 

environments, providing reliable support for robotic navigation. However, this research also has 

limitations due to the environmental perception capabilities of depth cameras and their computational 

resource requirements, which may restrict their application. Future research directions have been 
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identified to address these limitations, specifically improving light adaptability and reducing 

computational costs to enhance detection accuracy in complex environments. It is hoped that through 

the technological optimization of YOLO and depth cameras, they can be better applied in robotic 

navigation. 

Environmental perception and path planning based on deep learning, by integrating spatial 

information from depth cameras and efficient path planning algorithms, have achieved a balance of 

high precision, real-time performance, and adaptability to complex scenes. Future research could 

focus on reducing costs, enhancing environmental adaptability, and expanding path planning 

algorithms. Future studies might further explore various directions, such as increasing adaptability to 

lighting conditions and enhancing the environmental robustness of the YOLO and depth camera 

systems. Integrating data from multiple sensors (such as LiDAR and cameras) could improve the 

robustness of navigation systems in low-light and dynamically complex environments. Further 

optimization of depth cameras and the YOLO architecture to maintain efficient performance on 

devices with limited computational resources is one of the prospective research directions. 
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