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Abstract: Single-cell RNA sequencing (scRNA-seq) offers an exceptional opportunity to 
uncover the mechanisms underlying complex diseases, such as cancer, at cellular resolution 
across diverse tissues. However, despite its potential, scRNA-seq faces considerable 
challenges, particularly in the accurate annotation of cell types due to inherent sequencing 
noise and the sparsity of gene expression data. To address these limitations, we have 
developed an advanced ensemble learning-based convolutional neural network (CNN) model 
specifically designed for the analysis of large-scale scRNA-seq data. Importantly, in a case 
study, we applied this model to classify subpopulations of bone marrow mononuclear cells 
using RNA transcript raw read counts from a dataset comprising 10032 samples of cells, 
13822 genes, and 14 distinct cell types. Specifically, we conducted a comparative analysis of 
our model against other deep learning architectures, including MLP, LSTM, Attention 
mechanisms, as well as their ensemble models. Our results demonstrate that the CNN-based 
ensemble models consistently outperformed other networks, achieving optimal performance 
with a precision of 0.9143, an F1 score of 0.9143, and an accuracy of 0.9143, which represent 
significant improvements over the competing models. Moreover, visualization of the 
classification results using Umap highlights our model's capability in distinguishing cell types 
at cellular resolution. In conclusion, our CNN-based ensemble model not only demonstrates 
high efficacy in classifying bone marrow mononuclear cell types but also contributes a good 
approach to predictive modeling in the single-cell data analysis field.  
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1. Introduction 

Single-cell RNA sequencing (scRNA-seq) provides an exceptional opportunity to dissect cellular 
heterogeneity by capturing RNA information at the single-cell level and examining the differential 
expression of genes across individual cells [1–4]. It surpasses bulk RNA sequencing, which averages 
gene expression over different types of cells in one tissue, potentially masking the gene expression 
dynamics occurring within specific cell subpopulations. In contrast, scRNA-seq excels in identifying 
variations in gene expression between individual cells, allowing for the precise determination of 
which genes are upregulated or downregulated across different cell types [4–7]. Thus, scRNA-seq is 
particularly well-suited for the study of complex diseases, such as cancer, where cellular 
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heterogeneity within the same tissue. Specifically, scRNA-seq can differentiate between various 
immune cell subtypes and reveal their functional roles in immune responses, shedding light on how 
the immune system interacts with tumor cells. Such insights are critical for understanding immune 
dysregulation in cancer and for advancing the development of targeted immunotherapies [2,7]. 

Bone marrow mononuclear cells (BMMCs), which comprise a population of single-nucleus cells 
extracted from the bone marrow, include hematopoietic stem cells, progenitor cells, and several 
mature cells such as lymphocytes and monocytes. These cells are closely associated with 
hematological disorders, including leukemia, lymphoma, and multiple myeloma, as well as certain 
immune-related diseases. Studying the changes in BMMCs under disease conditions can aid in 
identifying disease-specific biomarkers and potential therapeutic targets [7,8]. As a result, BMMCs 
represent a critical focus of scRNA-seq research, particularly in the context of disease. However, 
within the scope of scRNA-seq analysis, cell annotation remains the most crucial and challenging 
step for accurately identifying cell functions. Determining cell types is often hindered by the limited 
availability of well-established biological markers and reference datasets, making it difficult to fully 
leverage the potential of scRNA-seq in functional characterization. 

Current methods for cell annotation in scRNA-seq data can be broadly categorized into three 
approaches [3,9,10]. The first category involves clustering-based annotation, where different 
clustering algorithms such as k-means or hierarchical clustering are applied to scRNA-seq data to 
group cells with similar expression patterns [6,11]. However, while this approach can identify clusters 
of cells with analogous gene expression profiles, it does not directly reveal the specific cell types, and 
the simplicity of the method often results in lower accuracy. The second approach relies on known 
marker genes for specific cell types to annotate new single-cell datasets [12]. While this method can 
be effective for well-characterized cell types, it is heavily dependent on the availability of established 
marker genes.  As a result, it becomes challenging to annotate cell types or novel cell states for which 
no clear marker genes are known. The final approach applies supervised learning algorithms to predict 
cell types based on single-cell expression data. However, the application of scRNA-seq often requires 
careful consideration due to the high costs associated with single-cell sequencing, which limits the 
scope of data collection. Furthermore, scRNA-seq datasets vary significantly in sequencing depth, 
noise, and biological complexity, making it difficult to construct models that can be applied reliably 
across different datasets. Additionally, the inherent sparsity of scRNA-seq data, due to the low 
abundance of mRNA molecules and the failure to detect the expression of many genes, poses a risk 
of overfitting. Traditional machine learning methods, such as support vector machines (SVM) and 
random forests, have shown low performance in this situation. As the sequencing techniques 
developed, there is massive scRNA-seq data generated, which promises a good data basis for using 
deep learning to solve this challenge, making it highly suitable for scRNA-seq cell type 
classification[6,13–17]. 

In this paper, to address the aforementioned challenges, we utilized a dataset comprising raw RNA 
transcript read counts in bone marrow mononuclear cell subpopulations. We introduced ensemble 
learning into convolutional neural networks (CNNs), which are well-suited for handling high-
dimensional data. Through convolutional operations, CNNs significantly reduce the dimensionality 
of data while minimizing the loss of valuable information. By incorporating ensemble learning, we 
were able to enhance the model's performance without drastically increasing the number of 
parameters, making it more efficient for analyzing sparse single-cell sequencing matrices. 
Additionally, we implemented regularization techniques and cross-validation during the training 
process to further optimize the model. To validate the effectiveness of our approach, we conducted 
comparative experiments with other classical deep learning models. In conclusion, our CNN-based 
ensemble model represents a step forward in addressing the challenges of cell type annotation in 
scRNA-seq data. Its strong performance across various metrics highlights the potential of deep 
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learning to improve single-cell data analysis, paving the way for deeper insights into cellular 
heterogeneity and the mechanisms underlying complex diseases. 

2. Materials and Methods 

2.1. Datasets 

We collected the public single cell data from an international competition, NeurIPS 2021: Multimodal 
Single-Cell Data Integration [18]. All the raw data can be freely downloaded from the GEO database 
with accession number GSE194122. It contains single-cell multiomics data collected from bone 
marrow mononuclear cells of 12 healthy human donors. Half the samples were measured using the 
10X Multiple Gene Expression and Chromatin Accessibility kit and half were measured using the 
10X 3' Single-Cell Gene Expression kit with Feature Barcoding in combination with the BioLegend 
TotalSeq B Universal Human Panel v1.0. Samples were prepared using a standard protocol at four 
sites. The resulting data was then annotated to identify cell types and remove doublets. The dataset 
was designed with a nested batch layout such that some donor samples were measured at multiple 
sites with some donors measured at a single site. More detailed generation process information can 
be found at the GEO database. In total, it contains 10032 cells and 13822 genes and 14 different cell 
types. Using sklearn’s split function, split the single cell dataset and the labels into a training and test 
set. The training and test set contain 6688 and 3344 cells, respectively. 

2.2. Methods 

Model architecture: We developed a neural network architecture to predict single-cell bone marrow 
mononuclear cell types using scRNA-seq gene expression data. Our method comprises two key 
components[19]. First, we individually implemented the multilayer perceptron (MLP), convolutional 
neural network (CNN), long short-term memory (LSTM), and attention-based models to establish 
baseline performance. The MLP serves as a fundamental feedforward neural network model, 
consisting of multiple fully connected layers, which is suitable for the simple data processing. The 
CNN, on the other hand, is particularly well-suited for handling high-dimensional gene expression 
data by exploiting local patterns within the data. Through convolutional operations, CNNs reduce the 
dimensionality of the input while retaining essential gene features, making them efficient for scRNA-
seq analysis where the data is both sparse and high-dimensional. LSTM networks are a type of 
recurrent neural network (RNN) designed to capture long-range dependencies in sequential data. 
Their ability to retain information over extended time steps makes them highly effective in handling 
temporal dynamics, which can be beneficial when analyzing time-related gene expression patterns in 
scRNA-seq data. Finally, the Attention mechanism improves upon LSTMs by allowing the model to 
focus on the most relevant parts of the input sequence, which enables more effective learning of 
intricate relationships between genes. The second process is to use ensemble learning to combine the 
outputs of the MLP, CNN, and LSTM models, respectively. Ensemble learning is a strategy that 
integrates different algorithms into one metamodel to improve the prediction accuracy. In a voting 
ensemble learning, the outputs of several models, including MLP, CNN, and LSTM, were combined, 
respectively, to reduce the likelihood of poor generalization due to model bias, and lead to improved 
performance of single cell types identification [19,20]. To further enhance the predictive performance 
of these models, we incorporated ensemble learning, a method designed to combine the strengths of 
multiple classifiers. Ensemble learning leverages the advantages of different models to produce a 
more accurate and robust final prediction of cell types in scRNA-seq data. By aggregating the outputs 
of different models, ensemble techniques can reduce the variance and mitigate the risk of overfitting, 
which is particularly valuable when working with sparse and noisy scRNA-seq data. In summary, by 
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introducing ensemble learning, we achieved improved model accuracy and robustness, providing a 
powerful tool for the classification of bone marrow mononuclear cell types from scRNA-seq data.   

2.3. Training approach 

This section shows the experimental process and results of our model training. The model was 
implemented in the PyTorch 1.11 and Sklearn environment 1.0.2, using a combination of SGD and 
the Adam optimizer for efficient gradient descent optimization. Several hyperparameters were 
carefully tuned to optimize model performance. After multiple iterations of fine-tuning, the final 
configuration was determined as follows: the input feature size corresponds to the dimensionality of 
the scRNA-seq gene expression data, while the network architecture consists of 4 layers, allowing 
the model to capture complex interactions between genes. The output feature size is set to 14, 
corresponding to the 14 distinct cell types in the classification task. The minibatch size was set at 128 
to ensure stable training without overwhelming memory resources, while still providing sufficient 
data for each training iteration. The initial learning rate was set to 0.0005, providing a balance 
between convergence speed and stability. To further refine training, a learning rate decay of 10% was 
applied every 200 iterations, which helped prevent overshooting the optimal solution and improved 
generalization. We believe this training process contributed to the model’s ability to efficiently 
classify bone marrow mononuclear cell types from scRNA-seq data. 

2.4. Model Assessment 

To assess our model for three-class classification, we employed important metrics: Accuracy (ACC) 
and Macro F1 Score, which used the terms true negative (TN), true positive (TP), false negative (FN), 
and false positive (FP). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝐹𝐹 

𝐹𝐹1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
2 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅  

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =  
𝑇𝑇𝑃𝑃 +  𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃 +  𝑇𝑇𝐹𝐹 +  𝐹𝐹𝐹𝐹 

3. Results 

3.1. Compare different deep learning models for predicting Single-Cell Bone Marrow 
Mononuclear Cell Types 

Initially, our model comprises three base architectures: MLP, CNN, and LSTM. The performance of 
the MLP model, due to its simplicity, struggled to capture key patterns and features from the single-
cell data. Additionally, MLP is not well-suited for handling high-dimensional data, leading to 
suboptimal performance. The results for MLP were accuracy, F1 score, precision, and recall all 
around 0.7651, reflecting its limitations in extracting meaningful insights from the data. In contrast, 
the CNN and LSTM models showed improved performance. LSTM, which is specifically designed 
for sequential data such as DNA and protein sequences, did not perform as effectively on gene 
expression data, achieving an accuracy of approximately 0.8. While LSTM excels at capturing 
temporal dependencies, its application to gene expression data is less optimal. However, when 
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combined with the attention mechanism, which enhances the model's ability to focus on important 
features, the performance of LSTM improved significantly, reaching an accuracy of around 0.89. 
Nevertheless, this was still slightly lower than the CNN model. Finally, the CNN model, due to its 
convolutional mechanism, is particularly well-suited for processing high-dimensional gene 
expression data. CNNs can efficiently reduce the dimensionality of tens of thousands of features 
through successive convolutional layers without losing critical information. The features extracted by 
the CNN are highly representative of cell types, resulting in strong classification performance. The 
CNN achieved an accuracy, F1 score, precision, and recall of 0.904, indicating its effectiveness in 
capturing the complex patterns within single-cell RNA-seq data. 

Next, we introduced ensemble learning, a method that combines the strengths of multiple models 
to enhance overall performance. To maintain a lightweight architecture, we focused on integrating 
the LSTM and CNN models. The results show that, while the LSTM base model initially performed 
suboptimally, ensemble learning improved its performance significantly, raising accuracy to around 
0.88, a notable 6-point increase. The CNN model, already performing well on its own, further 
benefited from ensemble learning, achieving an accuracy, F1 score, precision, and recall of 0.9143. 
This represents the best performance among all models tested, demonstrating the effectiveness of the 
ensemble approach in optimizing CNN's ability to handle high-dimensional single-cell RNA-seq data. 

Table 1: Model performance 
Algorithms Precision Recall F1 Accuracy 

MLP 0.7651 0.7651 0.7651 0.7651 
CNN 0.904 0.904 0.904 0.904 

CNN Ensemble 0.9143 0.9143 0.9143 0.9143 
LTSM 0.8146 0.8146 0.8146 0.8146 

LTSM ATT 0.8983 0.8983 0.8983 0.8983 
LTSM Ensemble 0.8797 0.8797 0.8797 0.8797 

CNN LTSM 0.8704 0.8704 0.8704 0.8704 
 
Further analysis was conducted to evaluate the prediction accuracy across all 14 distinct cell types. 

As shown in the accompanying figures and tables, the model demonstrates superior performance in 
classifying the various cell types. These results indicate that our approach consistently outperforms 
other methods, providing accurate and reliable predictions across different cell populations. 

 
Figure 1: Cell Type Identification based on Single-cell RNA-seq 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/115/2025.18528 

204 



 

3.2. UMAP Visualization for different cell type annotations 

Overall, the 14 cell types are clearly distinguishable, with particularly high accuracy in separating 
classical monocytes, memory CD4 T cells, and intermediate monocytes, as evidenced by the results. 
In contrast, naive CD8 T cells were more challenging to classify, with some overlap observed between 
this cell type and memory CD4 T cells. In summary, despite minor classification difficulties with 
certain cell types, the overall performance of the model was highly satisfactory, demonstrating strong 
predictive capability across the majority of cell types. 

  
Figure 2: UMAP Visualization for different cell type annotations: 

4. Conclusion 

In this study, we introduced an ensemble learning-based CNN to achieve high-performance 
classification of single-cell bone marrow mononuclear cell types based on their gene expressions. 
Specifically, we began by collecting public single-cell data from the NeurIPS 2021: Multimodal 
Single-Cell Data Integration competition and preprocessed it for further analysis. Subsequently, we 
constructed several classical deep learning models, including MLP, LSTM, CNN, and attention-based 
architectures, all of which demonstrated strong performance, with the accuracy of more than 0.8. To 
further improve the model’s accuracy, we employed ensemble learning to combine homogeneous 
classifiers, like CNN, MLP and LSTM. The Comparative experiments revealed that the 1D CNN 
model with ensemble learning outperformed the other models, achieving an accuracy of 0.9143 and 
an F1 score of 0.9143. Finally, we utilized a heatmap to examine the classification results across 
different cell types, showing that our model provided highly accurate cell type annotations. 
Additionally, we also employed UMAP for visualization, which effectively illustrated the model’s 
classification performance. 

In conclusion, our approach not only offers a powerful tool for the classification of single-cell 
bone marrow mononuclear cell types but also provides a robust solution for other single-cell 
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annotation challenges. By leveraging a lightweight ensemble learning framework, we enhanced the 
effectiveness of cell type classification models, offering broader applications for single-cell data 
analysis. 

Data and code availability 

Datasets analyzed in this study are publicly available from: GEO (www.ncbi.nlm.nih.gov/geo/, with 
GSE194122). Trained model, additional documentation and code for training and predicting with our 
model available at: https://github.com/cclaireshi/Single_Cell_Classification_with_CNN-ensemble_
Neural_Network 
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