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Abstract. The efficient and cost-effective delivery of goods ordered online poses a significant 

challenge in the field of logistics. Many companies are exploring the use of drone technology to 

streamline delivery times and expenses. In the context of last-mile deliveries, the deployment of 

drones represents a promising technology that offers environmental and economic advantages. 

This study focuses on last-mile delivery systems, where a fleet of drones operates in conjunction 

with public transportation to fulfill customer orders. To address this issue, the paper expands 

upon a mathematical model based on the Vehicle Routing Problem (VRP). Furthermore, it 

presents a real-life scenario inspired by Stanford’s transportation paradigm. The findings indicate 

that optimizing the sequence for visiting customers and public transportation stations has a 

substantial impact on both remaining power and time efficiency during drone deliveries. 

Moreover, leveraging public transport vehicles for recharging drones or approaching customers 

can reduce the required number of drones within service areas, thereby extending their 

operational lifespan. These results highlight the potential for using public transportation as a 

mobile charging station to save energy and improve package delivery efficiency in last-mile 

drone deliveries. 
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1.  Literature Review 

The surge of e-commerce and the rapid urbanization have injected fresh vigor into the development of 

e-commerce, driven by novel business models such as customer live e-commerce, community group 

buying, and social e-commerce. This has led to a shift in consumer behavior from business-to-business 

(B2B) to business-to-consumer (B2C), with heightened expectations for delivery services [1]. In recent 

years, express delivery volume has maintained an annual growth rate of approximately 30%, attributed 

to increasing market demand and policy incentives. It is anticipated that the total postal and express 

delivery volume will sustain an annual growth rate of around 6.3% from 2021 to 2035 [2]. Of course, 

this continued expansion will necessitate greater demand for last-mile delivery vehicles, making it 

imperative for traffic management authorities to ensure the healthy and sustainable development of the 

express delivery industry while upholding traffic safety standards [3]. 
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Therefore, escalating urbanization worldwide has posed significant challenges in delivering goods. 

Moreover, rural areas heavily rely on manual labor for deliveries due to remote locations and scattered 

orders resulting in low efficient and high costs [4]. Most final mile deliveries are carried out using 

electric tricycles, weak safety education among logistics companies regarding their use leads to frequent 

accidents such as speeding or overloading during production processes [5]. At the same time, operational 

expenses within current enterprises is rising [6].Drones as a new mode of transportation offers economic 

advantages through flexible three-dimensional movement capabilities which can bypass traffic jams or 

accidents leading to faster average speeds and reducing overall delivery times [7]. From an 

environmental perspective drones offer reduced carbon footprint compared with typical diesel deliveries 

owing largely due their electric engine propulsion systems [8].Accordingly drone technology presents 

substantial commercial opportunities indicated by its projected global market size reaching $1.33 billion 

by 2030 with compound annual growth rate at 14%.[9]. 

In the context of new retail, e-commerce logistics distribution faces challenges in matching supply 

and demand. Consumers expect door-to-door delivery services to enhance convenience and user 

experience. However, traditional end-of-line distribution methods hinder e-commerce development due 

to poor timeliness and limited convenience [10]. As a result, alternative delivery methods are necessary. 

Wang highlighted the potential of drones for their flexibility, cost-effectiveness, and suitability for 

various civil applications, particularly in package delivery within the logistics industry. Traditional 

vehicle-based parcel delivery is constrained by road conditions and geography, leading to high 

distribution costs (fixed vehicle costs, labor costs) [11]. In contrast, drones can bypass ground 

constraints such as traffic congestion or complex terrain while flying shorter routes without additional 

waiting time due to traffic jams. Experimental simulations have demonstrated that using drones for last-

mile logistics reduces fixed costs and fuel consumption compared to traditional transport vehicles [12].In 

contrast with prior research efforts, this study focuses on leveraging existing public transportation 

systems as mobile recharging hubs for extending drone flight ranges. Pioneering work from Stanford 

University introduces novel approaches utilizing modes like buses within these networks to enhance 

unmanned aerial vehicle capabilities [13]. The development includes an intricate algorithmic structure 

addressing multi- drone cargo deliveries through integration with bus services aimed at conserving drone 

energy resources [14]. Generally speaking, substituting traditional truck-based methods with utilizing 

forms of mass transit like commuter trains or trams offers dual benefits for expanding drones operational 

distances [15]. 

In recent years, traffic restrictions in urban areas have efficient improvement in drone joint delivery 

models due to peak congestion characteristics associated with urban trucks. Conversely public transport 

priority policies have facilitated efficient operation during rush hours within public transportation 

systems [13]. Y. Liu recently studied utilizing public transportation networks for expanding flight 

coverage in drone package deliveries while other forms of public transport with drones demonstrating 

increased customer distribution rates compared with standalone drone operations [16]. Energy efficient 

utilization across existing public transportation networks extending operational range through bus-

assisted charging stations as depicted. This approach not only expands service coverage but also reduces 

overall costs while prolonging drone service life. Firstly, independent routing characteristic of mass 

transit systems ensures efficient unaffected by urban traffic patterns leading to improved delivery 

timelines and reduced energy consumption levels; secondly these established infrastructures are 

essential components supporting urban mobility needs thereby presenting cost-effective alternatives 

compared with constructing new facilities like charging stations envisioned within smart city 

frameworks while also minimizing reliance on conventional fuel-powered vehicles. 

2.  Methodology 

2.1.  Problem description and assumptions 

This section describes the main assumptions of the defined problem and presents the associated 

mathematical model. It is assumed that a regional parcel delivery system consists of several distribution 
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warehouses equipped with a certain number of drones, several bus routes available for drone pick-up 

equipped with a number of vehicles, and a number of customer points with demand. At the beginning 

of the delivery, the bus vehicles run according to a fixed line and a fixed schedule, and the drones depart 

from the warehouse to carry the bus vehicles and run with the buses, and at the optimal location from 

the customer point, the drones take off and deliver to the customer point, and after delivering customers 

in a region, the drones can proceed to provide service to the next customer or go to a nearby station to 

carry the buses back to the warehouse. The objective function of the problem aims to minimize the total 

energy required to deliver customer orders in the last mile. These established infrastructures are essential 

components supporting urban mobility needs thereby presenting cost-effective alternatives compared 

with constructing new facilities like charging stations envisioned within smart city frameworks while 

also minimizing reliance on conventional fuel-powered vehicles, as shown as Figure 1. 

 

Figure 1. General description of the proposed Drone-public delivery system. 

2.2.  Notations and mathematical formulations 

This study investigates the application of drones in less developed areas logistic systems. We introduce 

a variable to record the time-space arc selection for drone d, as follows; xijd  =1 if drone v flies from node 

i to node j, SoC state of charge, e.g., 100%.The planning horizon is discreted by T=[t0, t0 +∆, 

t0+2∆,...,T], Ns =S∪W∪C, N={(n, t)|n∈Ns, t∈T} time-space nodes set example : N={0:(warehouse 

1, 8:00), 1:(0, 1), ... },i, j∈N, Ni− the feasible downstream node for node i, i∈N, e.g., i is defined as 

(n1, t1), j is defined as (n2, t2). j∈Ni−→t2 >t1.t2 >t1 and n1=n2→j∈Ni−. Rn1,n2 is the route distance 

between n1 and n2. Dn1,n2 is the distance between n1 and n2, if min{  , }> t2−t1 , then j  

Ni− , Ni+: i∈Nj+ ↔j∈Ni−, arc a=(i, j), ∀i, j∈N. FS records the spatial node for node i∈N, such that 

FS (i)∈Ns .FT records the time for node. i∈N, such that FT(i)∈T. FE records the minimum energy 

for spatial node FS(i), i∈N to node FS(j), j∈N within the time period (FT(j)−FT(i)).FE records the 

minimum energy for spatial node. FE records the minimum energy for spatial node FS (i), i ∈ N to 

node FS (j), j∈N within the time period (FT(j)−FT(i)). FE records the minimum energy for spatial node. 

2.3.  Drone energy consumption models and constraints 

Dorling et al. verified that the average power consumption of a drone is approximately equal when 

hovering, flying horizontally and changing altitude. Therefore, the battery consumption is positively 

correlated with the weight of the drone. In this study, we refer to Liu’s energy consumption model and 

introduce the parameter α denotes the rate of energy consumption per unit of distance per unit of weight, 

and denote own weight by ws, wdi is the loaded weight of the drone when it leaves the point i. d is the 

distance from I to j. The energy consumption of the UAV d passing through the (i, j) is then expressed. 

 𝐹𝑑𝑖𝑗 = 𝛼(𝑤𝑠 +𝑤𝑑𝑖)𝑑𝑖𝑗 (1) 

The energy consumption of the drone passing through (i, j). 
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑𝑗∈𝐽𝑖∈𝑊,𝐶 ∑ 𝐹𝐸𝑑∈𝐷 𝑥𝑖𝑗
𝑑 + ∑ ∑𝑗∈𝑊,𝐶𝑖∈𝐵 ∑ 𝐹𝐸𝑑∈𝐷 𝑥𝑖𝑗

𝑑  (2) 

The objective function (2) aims to minimize the total energy that drones consumed in delivery 

operations. As drone traveling over the bus does not endure energy consumption to drones, it is not 

included in the objective function. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹𝑇𝑑∈𝐷 𝑥𝑖𝑗
𝑑 + ∑ ∑𝑗∈𝐽𝑖∈𝐵 ∑ 𝐹𝑇𝑑∈𝐷 𝑥𝑖𝑗

𝑑  (3) 

The objective function (3) aims to minimize the total time consumed in delivery operations. 

3.  Results 

The model was validated by gathering actual parameters of customer and bus stop distribution in Suqian, 

China. Figure 2 illustrates the service regions utilized for distribution operations. Selecting several bus 

routes (No. 101,102,103) and establishing 13 strategically located bus stops extended the drone’s flying 

distance by enhancing battery life. Detailed information on the selected bus routes includes starting and 

ending locations, frequency, route length, as well as first and last departure times. 

Notably, more than the chosen routes exist within the study area; however, these three lines were 

selected due to their even distribution throughout the region. The model facilitated parcel delivery 

services for 30 customers based on real-world conditions. Two warehouses were established as freight 

stations with multiple drones at each location distributed across Suqian city to initiate delivery 

operations. Each customer had specific demands which necessitated a regional parcel delivery system 

comprising multiple distribution warehouses with a specified number of drones, three drone-ready bus 

routes equipped with various vehicles, and numerous customer points requiring deliveries of parcels 

with varying weights. Furthermore, it is emphasized that testing the validity of this model requires 

studying different input parameters including warehouse locations while also considering changes in 

both customer numbers and weight limits imposed on drones alongside their energy constraints. this 

model requires studying different input parameters including warehouse locations while also 

considering changes in both customer numbers and weight limits imposed on drones alongside their 

energy constraints. 

 

Figure 2. Numerical comparison. 

In China’s retail sector Meituan has initiated drone shuttle deliveries between skyscrapers using 

fourth- generation small multi-rotor drones similar to those described in this paper which support 
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temperatures ranging from -20°C to 50°C.Sample problems are solved using Python software running 

on an Intel® Core™ i7 6100 CPU @3.7 GHz8 GB memory system. 

This paper studied the optimal delivery route and order allocation for drones by solving the mixed 

integer linear programming (MILP) model that was formulated. Figure 3 shows the best solution 

obtained from numerical experiments. For example, the drone delivery route includes starting from the 

warehouse, jumping on a bus to travel two stops to charge the battery and passing through other stops, 

and then taking the bus to travel three stops back to the warehouse. According to the assumption, the 

drone can fully charge its battery in two stops. Therefore, the purpose of continuing to take the bus is to 

reach the customer without consuming energy, which highlights another role of public transportation in 

improving delivery operations. The results show that the order in which the drone visits the bus station 

and the customer. 

The study was conducted with four different numbers of customer totals of 30, 100, 500, and 1,000. 

After the model is solved, firstly, the total number of drones launched from each warehouse must fully 

meet the customer's needs. Secondly, the total number of public transportation stops used by drones in 

each warehouse to complete delivery operations in the assumed service area. Finally, the total energy 

consumption and time of drones in the delivery process. Under the premise of meeting the load capacity 

of drones, the warehouse closest to the public transportation infrastructure will maximize the load 

capacity of drones and complete the last-mile delivery. Even from the perspective of energy 

consumption, this conclusion is reliable. In the case of two warehouses, the position of the warehouses 

changed from a concentrated state to a dispersed state, serving different numbers of customers, and the 

energy consumption was reduced by 50.6%. In the case of four warehouses, the energy consumption 

was reduced by 47.7%. Compared to dispersed warehouses, drones delivering packages in concentrated 

warehouses require more energy, but it should also be noted that in urban areas with high package 

demand and short-distance delivery, drones fly alone for a longer distance. When the total number of 

warehouses increases from 2 to 4, the energy consumption reduction rate in the centralized warehouse 

scheme ranges from 42.8% to 50.6%, and the energy consumption reduction rate in the decentralized 

warehouse scheme ranges from 50.6%. Therefore, since the public transportation network plays an 

important role in distributing parcels, increasing the number of warehouses will not cause a significant 

change in energy consumption.  

The integration of drone delivery with public transportation as a mobile charging station is proposed 

to address the limitation of flight distance. Leveraging public transportation reduces delivery time and 

energy consumption by allowing drones to recharge their batteries and reach nearby customer locations. 

Therefore, it is necessary to consider using pre-build urban infrastructure, such as transportation system 

infrastructure and the optimal number of drones, rather than building more facilities such as warehouses 

or charging stations to fully cover the service area. This study presents a comprehensive analysis of the 

utilization of drones in “last-mile” delivery, focusing on economic and environmental considerations. 

The integration of drone delivery with public transportation as a mobile charging station is proposed to 

address the limitation of flight distance. Leveraging public transportation reduces delivery time and 

energy consumption by allowing drones to recharge their batteries and reach nearby customer locations. 

A mixed integer linear programming optimization model is introduced for planning drone group trips to 

fulfill customer orders, validated using real-world data from real node in China. Future research 

directions include developing heuristic meta-heuristic algorithms for large-scale problem solving, 

integrating drone-supported last-mile delivery into smart city scenarios, and exploring product overlap 

among warehouses in multiple picking scenarios. 
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