
Fast Constrained Sparse Dynamic Time Warping

Youngha Hwang

LG Display, DX Group
128 Yeoui-Daero, Yeongdeungpo-gu, Seoul, 07336, Republic of Korea

h.youngha@gmail.com

Abstract: Dynamic Time Warping (DTW) has been proposed to solve machine learning
problems when comparing time series. Such time series can occasionally be sparse due to the
inclusion of zero-values at many epochs. Since the traditional DTW does not utilize the spar-
sity of time series data, various fast algorithms equivalent to DTW were developed: (1) Sparse
Dynamic Warping (SDTW); (2) Constrained Sparse Dynamic Time Warping (CSDTW) with
the constraint on the warping path; (3) Fast Sparse Dynamic Time Warping (FSDTW) as a
fast approximate algorithm of SDTW. This paper develops and analyzes a fast algorithm that
approximates CSDTW, Fast Constrained Sparse Dynamic Time Warping (FCSDTW). FCS-
DTW significantly decreases the computational complexity compared to constrained DTW
(CDTW) and also shows speed improvement against CSDTW with negligible errors. This
study should add to a framework in sparsity exploitation for reducing complexity.

Keywords: dynamic time warping, time series, sparsity ratio, global constraint, sparse dy-
namic time warping

1. Introduction

After the first introduction of Dynamic Time Warping (DTW) in speech recognition [1], machine
learning has been using it for its various problems [2–4]. Several review articles [5, 6] highlighted
the potential of DTW for time series comparison. However, there was a main barrier to using DTW,
computational complexity. The time complexity, O (NM), provides an approximation of the work
required for an algorithm based on the input sizes, N and M . Numerous algorithmic strategies to
reduce the complexity of DTW have been published however they didn’t solve DTW problems exactly
[7, 8].

One of the real-life cases in sparse time series is managing zero values such as periods of silence
in speech, inactivity or lack of food intake [9], or periods when house appliances are not running [10].
They are not missing data but explain the sparse characteristics of the source. To mitigate the chal-
lenges when using DTW for such sources, Sparse Dynamic Time Warping (SDTW) [11], Binary
Sparse Dynamic Time Warping (BSDTW) [12], Constrained Sparse Dynamic Time Warping (CS-
DTW) [7], and Constrained Binary sparse Dynamic Time Warping (CBSDTW) [13] were developed
and analyzed to speed up the DTW. The new algorithms were equivalent to DTW but had their compu-
tational complexities reduced by the sparsity ratio, s or s2 (BSDTW, CBSDTW), where s was defined

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

50

as the arithmetic mean of the proportion of non-zero values in the data. Also, Fast Sparse Dynamic
Warping (FSDTW) [8] and AWarp [14] were developed and analyzed for further speed improvement
by the order of s2 at the expense of accuracy.

The current study focuses on the faster approximation of CSDTW, Fast Constrained Sparse Dy-
namic Time Warping (FCSDTW). The time complexity of FCSDTW is upper bounded by about 6s2

times the complexity of CDTW. Even though FCSDTW is slightly slower than constrained AWarp
(CAWarp) when comparing worst cases, a wide range of examples of FCSDTW is needed to provide
better complexity and a more accurate estimation of CDTW. The relative error of FCSDTW (relative
to CDTW) is typically ∼ 10−4, and is at least ten-thousandths that of CAWarp. Providing the most
rigorous analysis, this study should be a core background for further reduction of time complexity.

The review of DTW from the perspective of dynamic programming is not included. The interested
reader should refer to the previous publications [7, 8]. Section 2 presents the principles of FCSDTW
and its reduction of complexity compared to CDTW. Section 3 has a description of the FCSDTW
algorithm. Finally, the last section demonstrates the efficiency of FCSDTW with some numerical
analysis.

2. Principles Underlying FCSDTW

This section starts with some notation and review of CSDTW [7]. Then, the FCSDTW algorithm is
evident from FSDTW [8] properties and its complexity can be derived. However, explicit description
of the algorithm requires some effort, so this is done in Section 3..

Let us have two time series such as X = (x1, x2, · · · , xM) and Y = (y1, y2, · · · , yN), and
their subsequences of non-zero values are represented as Xs =

(
xm1 , xm2 , · · · , xmMs

)
and Ys =(

yn1 , yn2 , · · · , ynNs

)
, respectively. We have developed a faster approximation of the (i.e., FCSDTW)

algorithm with Xs and Ys that approximates CDTW in terms of the distance between X and Y . The
same notions [7, 8] were used when describing the geometric objects in the m− n plane for the time
indices of the non-zero data. A rectangle Ri,j is made of four vertices from the consecutive nonze-
ros mi−1,mi, nj−1, nj . We have the following accumulated distance definition from [7]: g(m,n) =
min [g(m,n− 1) + d(m,n)wv, g(m− 1, n− 1) + d(m,n)wd, g(m− 1, n) + d(m,n)wh], where
d(m,n) is the local distance.

As a brief review, SDTW calculates the accumulated distances along the top and right edges of
the rectangle Ri,j . For SDTW, computation at the lower left end of the interior, (mi−1 + 1, nj−1 +
1) is enough because the accumulated distances at the interior of Ri,j are the same. For CSDTW,
on the other hand, the feasible set F is involved in its calculation. [Note that CDTW calculates the
accumulated distances on F.] FCSDTW computes the distances only at the end points of Et ∩ F and
Er ∩ F because the accumulated distance calculation is sufficient at their endpoints. For the property
of FCSDTW, the definition of the intersections between the edges and the feasible set is needed.

Remark 1. The intersections between the edges (Et and Er) and the feasible region F and their bound-
aries (endpoints) are listed.
Et ∩ F = {(m,nj)|max(mi−1 + 1, nj − L) ≤ m ≤ min(mi − 1, nj + L)}.
Er ∩ F = {(mi, n)|max(nj−1 + 1,mi − L) ≤ n ≤ min(nj − 1,mi + L)}.
∂{Et ∩ F} = {(max(mi−1 + 1, nj − L), nj), (min(mi − 1, nj + L), nj)}.
∂{Er ∩ F} = {(mi,max(nj−1 + 1,mi − L)), (mi,min(nj − 1,mi + L))}.

Proof. The proof is shown in [7]. Their boundaries are given from the minimum and maximum. □

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

51

For FCSDTW, we have only to compute g(∂{Et ∩ F}) and g(∂{Er ∩ F}) instead of g(Et ∩ F)
and g(Er ∩ F), respectively because no accumulated distances are necessary on the points between
the end points. Note that we assume that the local distances are infinite outside the feasible set F , i.e.,
d(F c) = ∞. Let us first look at the case when when R◦

i,j ∩ F = ∅.

Proposition 1. Let us denote ∂{Et∩F} = {(t1, nj), (t2, nj)}, where t1 = max(mi−1+1, nj−L) and
t2 = min(mi − 1, nj +L), nj) Similarly, ∂{Er ∩F} = {(mi, r1), (mi, r2)}, where r1 = max(nj−1 +
1,mi − L) and r2 = min(nj − 1,mi + L) Then, g(∂{Et ∩ F} = {g(t1, nj), g(t2, nj)}) is computed
as follows when nj = nj−1 + 1 holds. g(t1, nj) can be computed from DTW.

g(t1, nj) = min{g(t1, nj−1)+d(0, nj)wv, g(t1−1, nj)+d(0, nj)wh, g(t1−1, nj−1)+d(0, nj)wd} (1)

if t1 > mi−1 + 1,

g(t2, nj) = min

g(t1, nj) + d(0, nj)(t2 − t1)wh

g(t2, nj−1) + d(0, nj)wv

g(t2 − 1, nj−1) + d(0, nj)wd

g(t1 − 1, nj−1) + d(0, nj−1)(t2 − t1)wh + d(0, nj)wd

(2)

otherwise, i.e., t1 = mi−1 + 1,

g(t2, nj) = min

g(t1, nj) + d(0, nj)(t2 − t1)wh

g(t2, nj−1) + d(0, nj)wv

g(t2 − 1, nj−1) + d(0, nj)wd

g(t1, nj−1) + d(0, nj−1)(t2 − t1 − 1)wh + d(0, nj)wd

g(t1, nj−1) + d(0, nj)(t2 − t1 − 1)wh + d(0, nj)wd

(3)

g(∂{Er ∩ F} = {g(mi, r1), g(mi, r2)}) is computed as follows when mi = mi−1 + 1 holds.
g(mi, r1) can be computed from DTW.

g(mi, r1) = min{g(mi, r1−1)+d(mi, 0)wv, g(mi−1, r1)+d(mi, 0)wh, g(mi−1, r1−1)+d(mi, 0)wd}
(4)

if r1 > nj−1 + 1,

g(mi, r2) = min

g(mi, r1) + d(mi, 0)(r2 − r1)wv

g(mi−1, r2) + d(mi, 0)wh

g(mi−1, r2 − 1) + d(mi, 0)wd

g(mi−1, r1 − 1) + d(mi−1, 0)(r2 − r1)wv + d(mi, 0)wd

(5)

otherwise, i.e., r1 = nj−1 + 1,

g(mi, r2) = min

g(mi, r1) + d(mi, 0)(r2 − r1)wv

g(mi−1, r2) + d(mi, 0)wh

g(mi−1, r2 − 1) + d(mi, 0)wd

g(mi−1, r1) + d(mi−1, 0)(r2 − r1 − 1)wv + d(mi, 0)wd

g(mi−1, r1) + d(mi, 0)(r2 − r1 − 1)wv + d(mi, 0)wd

(6)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

52

Proof. Let us first look into g(mi, r2) when mi = mi−1 + 1 holds. We know that g(mi, r2) al-
ways depend on g(mi, r1). Computation of g(mi, r2) depends on whether r1 = nj−1 + 1 holds and
r2 = nj − 1 holds. If r1 = nj−1 + 1 holds, then g(mi, r2) depends on g(mi−1, r1) like Eq. 8 of the
unconstrained FSDTW [8]. Otherwise, It depends on g(mi−1, r1 − 1) and it does not have the term
g(mi−1, r1 − 1) + d(mi, 0)wd + · · · like Eq. 6 because g(mi, r1) ≤ g(mi−1, r1 − 1) + d(mi, 0)wd

from its definition. Similarly, g(mi, r2) depends on g(mi−1, r2) if r2 = nj − 1 holds. Otherwise, It
depends on g(mi−1, r2 − 1). For the former case, we have g(mi−1, r2 − 1) = ∞ and vice versa for
the other case. Thus we can add both terms simultaneously and compute g(mi, r2) without checking
if r2 = rm − 1 or not. g(t2, nj) can be derived similarly when nj = nj−1 + 1 holds. □

Remark 2. Geometry of the feasible set F leads to the following result on g(R◦
i,j ∩ F).

g(R◦
i,j ∩ F) =

g(nj−1 − L, nj−1) if mi−1 + L < nj−1,

g(mi−1,mi−1 − L) if mi−1 − L > nj−1,

g(mi−1 + 1, nj−1 + 1) else.
(7)

Given the above remark, let us look at the case where R◦
i,j ∩ F ̸= ∅.

Proposition 2. g(∂{Et∩F}) is equal to g(R◦
i,j∩F)+d(0, nj)min{wv, wd} when (mi−1+1, nj) ̸∈ F .

Otherwise, i.e., t1 = mi−1 + 1 holds, it is computed as follows:

g(t1, nj) (8)
=min{g(R◦

i,j ∩ F) + d(0, nj)wv, g(mi−1, nj) + d(0, nj)wh, g(mi−1, nj − 1) + d(0, nj)wd}
g(t2, nj) = min{g(R◦

i,j ∩ F) + d(0, nj)min{wd, wv}, g(t1, nj) + d(0, nj)(t2 − t1)wh} (9)

g(∂{Er∩F}) is equal to g(R◦
i,j∩F)+d(mi, 0)min{wh, wd} when (mi, nj−1+1) ̸∈ F . Otherwise,

i.e., r1 = nj−1 + 1 holds, it is computed as follows:

g(mi, r1) (10)
=min{g(R◦

i,j ∩ F) + d(mi, 0)wh, g(mi, nj−1) + d(mi, 0)wv, g(mi − 1, nj−1) + d(mi, 0)wd}
g(mi, r2) = min{g(R◦

i,j ∩ F) + d(mi, 0)min{wd, wh}, g(mi, r1) + d(mi, 0)(r2 − r1)wv} (11)

Proof. Let us look at g(∂{Et ∩ F}) first. When (mi−1 + 1, nj) ̸∈ F , t1 = nj − L > ni−1 + 1. So
g(t1, nj) = g(t2, nj) = g(R◦

i,j∩F)+d(0, nj)min{wv, wd} holds. Otherwise, t1 = mi−1+1 holds and
we compute g(t1, nj) from DTW. g(t2, nj) can be computed from either g(R◦

i,j ∩ F) or g(t1, nj) like
Eq. 5 of the unconstrained FSDTW [8]. So Eq. 9 follows. g(∂{Er ∩ F}) can be computed similarly.
□

3. FCSDTW Algorithm and Complexity

The results in Section 2. show that it is possible to compute the DTW distance by scanning through
the intersections of the feasible set and the rectangles Ri,j row or column-wise, and only computing
the accumulated distances at six points, namely the end points of the top edge, those of the right edge,
the upper right vertex and a single interior point (if the interior is not empty). Indeed, the Propositions
and the subsequent Remarks show these accumulated distances can be expressed in terms of the

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

53

Algorithm 1 FCSDTW Algorithm
1: Append a dummy one if necessary to get time series X and Y which end in a one. Build Xs

and Ys of lengths Ms and Ns, respectively, from X and Y of lengths M and N , respectively, by
deleting the zeros.

2: for j = 1 : Ns do
3:

4: for i = 1 : Ms do
5:

6: if R◦
ij ̸= ∅ then

7: Compute g(R◦
i,j ∩ F) from Eq. 7.

8: if (mi−1 + 1, nj) ̸∈ F then
9: Compute g(∂{Et ∩ F}) from g(R◦

i,j ∩ F) + d(0, nj)min{wv, wd}
10: else
11: Compute g(∂{Et ∩ F}) from Eqs. 8, 9.
12: end if
13: if (mi, nj−1 + 1) ̸∈ F then
14: Compute g(∂{Er ∩ F}) from g(R◦

i,j ∩ F) + d(mi, 0)min{wh, wd}
15: else
16: Compute g(∂{Er ∩ F}) from Eqs. 10, 11.
17: end if

Compute g((mi, nj) ∩ F) in the same way as DTW
18: else
19:

20: if mi = mi−1 + 1 then
21: Compute g(∂{Er ∩ F}) from Eqs. 4, 5, 6.

Compute g((mi, nj) ∩ F) in the same way as DTW
22: else if nj = nj−1 + 1 then
23: Compute g(∂{Et ∩ F}) from Eqs. 1, 2, 3.

Compute g((mi, nj) ∩ F) in the same way as DTW
24: end if
25: end if
26: end for
27: end for
28: Compute the DTW distance as D(X, Y) = 1

K∗h(M
∗, N∗), where M∗ = M if a one is appended

to get X and M∗ = M−1 otherwise, and N∗ = N if a one is appended to get Y and N∗ = N−1
otherwise.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

54

corresponding accumulated distances at previously scanned rectangles. The boundary condition of
the algorithm was discussed in [7, 8]. Formally the FCSDTW algorithm can be written in Algorithm
1.

Bound on the time complexity CFCSDTW of FCSDTW was computed by counting the neces-
sary computation of the accumulated distances. It is proportional to that of FSDTW [8]. Its proof is
omitted.

Proposition 3. CFSDTW ≤ 2L
N
{6(Ns + 1)(Ms + 1)− 2N − 1} on average.

Remark 3. The expression of the bound is CFCSDTW ≤ 2L
N
{6s1s2N2 +12sN − 2N +5} and further

upper bounded by CFCSDTW ≤ 2L
N
{6s2N2 + 12sN − 2N + 5}, where as above s1 = Ns

N
, s2 = Ms

N

and s = 1
2
(s1 + s2), the sparsity ratio. Note that CFCSDTW = O(s2N2) as N → ∞ . The complexity

of CDTW is 2LN Thus, the complexity of FCSDTW over CDTW is calculated as 6s2 + 12s/N −
2/N + 5/N2.

4. Numerical Analysis

This section shows efficiency comparisons using synthetic and experimental data between FCSDTW
and CDTW and between FCSDTW with CAWarp and CSDTW. Other research has shown a signif-
icant reduction in time complexity but a large increase in errors [7, 11]. For FCSDTW we have the
same hyperparameters as CSDTW [7] with the same computer but different versions of software such
as MATLAB R2018b, and OS X 10.11.6. Following the same method in [7], the UCR collection was
used to generate sparse time series data [15], specifically ECG, Trace, Car, MALLAT, and CinC ECG
torso. Their abbreviations were ECG, TR, Car, ML, and CET, respectively.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
sparsity ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

re
la

tiv
e

tim
e

co
m

pl
ex

ity

Figure 1: Relative time complexity of CSDTW, FCSDTW, and CAWarp against CDTW are shown by
diamonds, crosshairs, and circles, respectively. The colors red, green, blue, black, and magenta denote
the data ECG, TR, Car, ML, and CET, respectively.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

55

Table 1: Regression coefficients for relative time complexity of FCSDTW over CDTW versus sparsity
ratio. b2 and b0 represent the coefficients of s2 and the constant.

data set length b2 b0
ECG 96 4.290 0.496
TR 275 4.332 0.205
Car 577 3.463 0.205
ML 1024 3.036 0.205
CET 1639 2.729 0.140

Table 2: Relative errors of the cost of FCSDTW over CDTW with varying sparsity ratio in 10−4. The
symbol ‘eps’ stands for errors less than double precision accuracy in MATLAB.

data set
sparsity ratio

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ECG eps eps eps 0.0017 0.1039 0.0172 0.1733 1.2845
TR eps eps eps 0.0769 0.0940 0.0789 0.0345 0.0474
Car eps eps 0.0673 0.0586 0.2367 0.2328 0.7437 0.3674
ML eps 0.0250 0.0464 0.0364 0.1336 0.5085 0.1859 0.3958
CET eps eps 0.0023 0.0293 0.0384 0.0710 0.1065 0.2563

Figure 1 demonstrates the relative time complexity - the ratio of the computing times - of CSDTW,
FCSDTW, and CAWarp over CDTW. In longer data records, the speed of CSDTW, FCSDTW, and
CAWarp increases (see Table 1), presumably from the lower overhead when the algorithm was initial-
ized. A similar trend was observed with the SDTW, BSDTW, and FSDTW [8, 11, 12]. The estimated
time complexity of CAWarp lies between 0.3 and 1.3 against FCSDTW in Figure 1. Their theoretical
ratio was 2/3.

Table 1 presents a second-order polynomial regression analysis comparing the relative time com-
plexity of algorithm FCSDTW to CDTW with the sparsity ratio from the sparse time series datasets.
The obtained regression is b2s2 + b0. We have the values of b2 between two and four, satisfying the
upper bound six in the Remark following Proposition 3. However, We have the values of b0 much
higher than FSDTW, probably because of the computing load to find the region Ri,j ∩F . Such exam-
ples are displayed in [7]. Note that s term is not negligible for ECG time series because its length N
is only 96. So b0 is estimated around 0.5. In contrast, b0 values are around 0.14 for CET because their
lengths are larger than 1600. Note that the values of b0 of CAWarp are between 0.02 and 0.2, which
are between two times and six times lower than FCSDTW. Such differences in the values of b0 result
in the time complexity differences between FCSDTW and CAWarp in Figure 1.

Table 2 shows the relative errors of the cost by comparing FCSDTW to CDTW in ten-thousandth
(10−4) scale. The relative errors of the cost of CAWarp are between 104 and 105 times those of FCS-
DTW in Table 3. Therefore when considering FCSDTW’s small errors, the speed of FCSDTW is
more significant compared to CAWarp. In addition, FCSDTW doesn’t have errors like FSDTW when
the low sparsity ratio is 0.05 or 0.1 because they nearly have no consecutive non-zeros, the cause of
errors.

Table 4 provides a comparison of the time complexities in CAWarp, FCSDTW, and CSDTW
against that of CDTW for washing machine power usage [10] to demonstrate the better performance
of FCSDTW in real datasets. The dataset was downsampled by 40 for fast processing and its length

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

56

Table 3: Relative errors of the cost of CAWarp over CDTW cost with varying sparsity ratio.

data set
sparsity ratio

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ECG 0.3053 0.2553 0.2363 0.1898 0.1681 0.1608 0.1634 0.1494
TR 0.3998 0.3534 0.3273 0.2938 0.2878 0.2673 0.2470 0.2467
Car 0.2476 0.1664 0.1671 0.1342 0.1476 0.1407 0.1497 0.1312
ML 0.2004 0.1402 0.1092 0.1018 0.0910 0.0810 0.0689 0.0714
CET 0.3627 0.3101 0.2927 0.2851 0.2089 0.2300 0.2126 0.2065

was reduced to 270 (from 10800). Although CAWarp is faster, but its error of the cost is much bigger
than that of FCSDTW: The relative errors in class 3 are 717.64 for CAWarp and 2.2052 for FCSDTW;
those in class 7 are 482.85 for CAWarp and 0.4922 for FCSDTW. Thus application of CAWarp to real
data can be impractical because its relative error amounts to more than 7% of the CDTW cost.

Table 4: Comparison of the relative time complexities of CAWarp, CSDTW, and FCSDTW against
CDTW

class 3 7
sparsity ratio 0.0578 0.02697

CSDTW 0.2204 0.1672
FCSDTW 0.1426 0.1362
CAWarp 0.0350 0.0194

5. Conclusion

This study developed and analyzed FCSDTW to compare sparse time series with zero data in many
research applications. FCSDTW closely approximated CDTW with much lower time complexities for
time series with many zero values and especially large lengths. FCSDTW is a distinct algorithm from
other approaches producing huge complexity reduction with significant errors or no change in com-
plexity without error. Further numerical experiments support the efficiency of FCSDTW compared
against CSDTW and CAWarp.

References

[1] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43–49, 1978.

[2] Claus Bahlmann and Hans Burkhardt. The writer independent online handwriting recognition
system frog on hand and cluster generative statistical dynamic time warping. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(3):299–310, 2004.

[3] Zsolt Miklos Kovacs-Vajna. A fingerprint verification system based on triangular matching
and dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(11):1266–1276, 2000.

[4] Samsu Sempena, Nur Ulfa Maulidevi, and Peb Ruswono Aryan. Human action recognition
using dynamic time warping. In Proceedings of the 2011 International Conference on Electrical
Engineering and Informatics, pages 1–5. IEEE, 2011.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

57

[5] Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys (CSUR),
45(1):12, 2012.

[6] Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, 2011.

[7] Youngha Hwang and Saul B Gelfand. Constrained sparse dynamic time warping. In Interna-
tional Conference on Machine Learning and Applications, pages 216–222. IEEE, 2018.

[8] Youngha Hwang and Saul B Gelfand. Fast sparse dynamic time warping. In 2022 26th Interna-
tional Conference on Pattern Recognition (ICPR), pages 3872–3877. IEEE, 2022.

[9] Heather A Eicher-Miller, Saul Gelfand, Youngha Hwang, Edward Delp, Anindya Bhadra, and
Jiaqi Guo. Distance metrics optimized for clustering temporal dietary patterning among us
adults. Appetite, 144:104451, 2020.

[10] David Murray and L Stankovic. Refit: electrical load measurements. URL=
http://www.refitsmarthomes.org/, 2017.

[11] Youngha Hwang and Saul B Gelfand. Sparse dynamic time warping. In International Confer-
ence on Machine Learning and Data Mining in Pattern Recognition, pages 163–175. Springer,
2017.

[12] Youngha Hwang and Saul B Gelfand. Binary sparse dynamic time warping. In International
Conference on Machine Learning and Data Mining in Pattern Recognition, pages 748–759.
Springer, 2019.

[13] Youngha Hwang. Constrained binary sparse dynamic time warping. In manuscript.
[14] Abdullah Mueen, Nikan Chavoshi, Noor Abu-El-Rub, Hossein Hamooni, Amanda Minnich, and

Jonathan MacCarthy. Speeding up dynamic time warping distance for sparse time series data.
Knowledge and Information Systems, 54(1):237–263, 2018.

[15] Eamonn Keogh, Xiaopeng Xi, Li Wei, and Chotirat Ann Ratanamahatana. The ucr time series
classification/clustering homepage. URL= http://www.cs.ucr.edu/˜ eamonn/time series data,
2006.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/120/2025.18742

58

