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Abstract: Cardiotocograph (CTG) is a commonly used method by obstetricians and 

gynecologists for monitoring pregnant women during the perinatal period. Doctors can 

analyze the relevant characteristics of fetal heart rate (FHR) with CTG under the guidance of 

CTG guidelines, which is crucial for the subsequent evaluation of fetal status and directly 

affects the choice of delivery method. However, clinical doctors often have disagreements in 

interpreting signal characteristics. To address these challenges, this study adopts a computer-

aided approach leveraging advancements in deep learning. An innovative feature analysis of 

CTG signals is proposed using the Ensemble Attention Dense U-Net (EADU-Net) network 

given the popularity of high-performance deep learning in recent years. For the ongoing 

controversy surrounding the interpretation of CTG signals, the CBAM attention mechanism 

and the Dense-block module's Ensemble Attention Dense U-Net (EADU-Net) network for 

automatic feature extraction of FHR signals from CTG signals was introduced. 66 data 

provided by the French Lille database for training and validation were used. The trained 

model was tested using 331 data from the Overseas Chinese Hospital database to obtain five 

relevant evaluation indicators. The performance of the algorithm was quantitatively 

compared with the traditional algorithm (WMFB algorithm) that currently has good 

performance. According to the test data, the EDAU-Net algorithm proposed in this paper 

improved the F measure (Acc. F-measure) by 17%, the Dec. F-measure (Dec. F-measure) by 

19.5%, the Root mean-square difference of baselines (BL. RMSD) by 0.17bpm, the Synthetic 

inconsistency coefficient (SI) by 16.85%, and the Morphological analysis discordance index 

(MADI) by 0.55%. These findings indicate that compared with traditional signal processing-

based algorithms, the CTG signal feature automatic extraction algorithm has the smallest 

difference in discrimination with clinical obstetrics and gynecology experts. 
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1. Introduction 

Discrepancies between the current automatic feature analysis of CTG signals and expert consensus 

arise from differences in fetal heart rate baseline and expert interpretation. The error in baseline 

interpretation of fetal heart rate can also affect the interpretation of acceleration and deceleration 

zones, and the differences in their judgments were interdependent. According to the clinical 

definitions of fetal heart rate baseline, acceleration, and deceleration, the deceleration and 

acceleration parts in the FHR signal were removed, and the remaining modules were used for baseline 
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calculation; After determining the baseline, the acceleration and deceleration zones were calculated 

based on the difference between the baseline and the signal, forming a logical dead loop. 

Currently, the mainstream method for signal feature analysis of CTG is still based on signal 

processing methods, which use sliding window filtering and progressive waveform trimming 

strategies to locate the acceleration and deceleration regions, from which the signal baseline is then 

derived [1]. Despite their widespread use, these methods face limitations and fail to achieve consistent, 

accurate results. 

The existing methods cannot achieve satisfactory results. Popular deep learning methods and 

relevant network models were introduced to handle the automatic feature extraction problem of FHR 

signals. Deep learning has shown good performance in morphological feature extraction, offers 

promising alternatives for tackling these challenges. For the localization of acceleration and 

deceleration zones, deep learning was used to process time-series signals for segmentation and 

identification of acceleration and deceleration zones. For the baseline calculation module, a baseline 

calculation strategy based on long short-term filters was proposed. This approach integrates 

morphological features with temporal priors, aligning closely with the clinical methodology used by 

doctors to determine baselines. 

In summary, this study algorithm for CTG signal feature extraction uses deep learning, addressing 

existing limitations and enhancing accuracy in signal analysis.  

2. Test dataset 

The French Lille database and Overseas Chinese Hospital database were used to verify the 

performance of the feature automatic extraction algorithm for FHR signals in CTG signals based on 

EADU-Net proposed. 

3. Feature extraction algorithm for EADU-Net 

An integrated U-shaped network equipped with a CBAM attention mechanism and Dense-block 

module for automatic feature extraction of FHR signals was proposed. The process can be roughly 

divided into 3 steps:  

(1) The preprocessing and enhancement of data remove noise from the signal, and the dataset was 

enhanced and expanded through cropping and concatenation. 

(2) EDAU-Net was used to segment the signal segments into areas of fetal heart rate acceleration 

and deceleration, and then concatenating the pre-labeled sub-segments to obtain a complete estimated 

signal annotated by the network. 

(3) The method of filtering with long and short line filters was used to obtain the baseline fetal 

heart rate of the signal, and finally provide the marked fetal heart rate acceleration and acceleration 

zone, as well as the baseline fetal heart rate of the entire segment [2]. 

3.1. EADU-Net Architecture 

Deep learning was used to automatically segment acceleration/deceleration regions during 

acceleration/deceleration detection. The input of the neural network was the preprocessed FHR signal 

sub-segment. EADU-Net consists of four U-Nets (ADU-Nets) with attention mechanism and Dense-

block, with kernel sizes (KS) of 21, 31, 61, and 81, respectively. By integrating the predicted results 

of the four MAU-Nets using the "OR" operation, potential acceleration/deceleration point areas in 

the signal sub-segments can be detected, as shown in the following figure.  
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Figure 1: Structure of EADU-Net 

The ADU-NET network structure is shown in the above figure, with the main body composed of 

U-net, which can be clearly divided into the encoder module on the left and the decoder module on 

the right, with the encoder and decoder modules connected in the middle. 

The input data is one-dimensional signal data, with a length of 4,800 and 1 channel. The selected 

data batch size is 64.  

Finally, after passing through a layer of softmax function, the output data length is 4,800 and the 

channels are 3, representing the segmentation of the baseline, acceleration, and deceleration regions 

in the CTG. 

3.2. Loss Function and Optimizer 

A comprehensive loss function was used, including Cross-Entropy (CE), Generalized- Dice (GD), 

and Kullback-Leibler (KL), and these three parts are combined with certain weights. The respective 

weights are shown in the following formula.  

 LOSS = 0.99GD + 0.01CE + 0.01KL (1) 

The classic Adam optimizer was used to set the initial learning rate of the model at 0.001 during 

training. After every 50 iteration cycles, the learning rate decays by 0.1 times, for a total of 210 

training epochs.  

3.3. Automatic baseline calculation 

After predicting and identifying the acceleration and deceleration zones through the sub-segments of 

the network, the individual customizations were concatenated in the above manner to obtain the 

overall signal acceleration and deceleration zone prediction results. The complete signal obtained by 

concatenating the predicted indicators is the basis for automatic baseline calculation in this article [3].  
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Firstly, based on the previous prediction, the preprocessed FHR signal x [n] and its predicted label 

y [n] were obtained (Figure 3-5b), n=1, 2, ..., N. Then, the discrete baseline state signal L [n] was 

calculated as follows:  

 L[n] = {
x[n], y[n] = 1

0, y[n] = 0
  (2) 

Next, long-term median filtering was used to calculate the reference baseline L_ref [n], as follows:  

 Lref[n] = {
median(L[n], ⋯ , L[n + k]), s[n] ≥ 0.1

0, otℎers
  (3) 

 s[n] =
1

k
∑ y[i]

n+k

i=n
  (4) 

Where, k is the window function length of the filter, set to 20 min. In this study, and s [n] is the 

percentage of baseline points in the sliding window. If there are few baseline points, the FHR 

reference baseline may be inaccurately calculated. Therefore, points with s [n] ≤ 0.1 are defined as 

invalid points and replaced with linear interpolation [4]. Next, compared with L_ref, baseline points 

in L [n] with fluctuations exceeding 15 bpm are identified as abnormal and removed. The calculation 

method is as follows:  

 L′[n] = {
L[n], |L[n] − Lref[n]| ≤ 15bpm

0, otℎers
  (5) 

Then, the outliers with values of 0 in L’ [n] are processed through linear interpolation. Finally, L’ 

[n] passes through a short-term median filter with a window function length of 2 min. to obtain the 

final baseline. 

 

Figure 2: Schematic figure of automatic baseline calculation 

3.4. Evaluation indicators 

To evaluate the inconsistency between feature extraction methods and expert consensus, the test 

results were compared with expert consensus using the following metrics for each independent signal, 

as shown below.  
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Table 1: Explanation of Evaluation Index Parameters 

Baseline assessment  Root mean-square difference of baselines  BL. RMSD  

Deceleration detection  F-measure  Dec.F-measure  

Accelerated detection  F-measure  Acc.F-measure  

Comprehensive evaluation  

 

Synthetic inconsistency coefficient  

 

SI  

 

Morphological analysis discordance index 
MADI 

 

To evaluate the differences between the algorithm feature extraction and expert annotation, the 

following five indicators were proposed. Three indicators reflect the performance of three different 

feature predictions, while the other two are comprehensive indicators, each of which simultaneously 

characterizes the performance of extracting and analyzing multiple features.  

3.4.1. Baseline assessment 

Baseline root mean square deviation (BL. RMSD) was approximately defined as the probability-

based root mean square deviation, a measure of average deviation measured in bpm. Because the 

meaning was close to the variance, the smaller the fixed value, the better the representation 

performance. The specific formula is as follows [5]:  

 BL. RMSD(BL. P − BL. E) = √
∑ (BL.Pi−BL.Ei)

2n

i=1

n
  (6) 

BL. P is the prediction baseline of the model, BL. E is the consensus marker baseline of experts, 

and n represents the number of FHR signal points in the segment.  

3.4.2. Acceleration and deceleration detection 

Acceleration and deceleration have similarities in morphology, and the F-measure is used to evaluate 

the accuracy of the algorithm's predicted acceleration and deceleration zones. The criterion for 

judgment is that the acceleration and deceleration zones segmented by the model are consistent with 

the expert's annotation results for more than 5s, which is considered positive. The specific formula is 

shown below.  

 F − Measure =
2×PPV×SEN

PPV+SEN
  (7) 

Where, the sensitivity of acceleration/deceleration detection (Acc.SEN/Dec.SEN) corresponds to 

the percentage of correctly detected acceleration/deceleration to the total number of acceleration/ 

deceleration recognized by expert consensus. The positive prediction of acceleration/deceleration 

detection (Acc. PPV/Dec. PPV) corresponds to the percentage of correctly detected 

acceleration/deceleration to the total number of acceleration/ deceleration detected by the algorithm 

[6].  

3.4.3. Comprehensive evaluation indicators 

The evaluation index SI integrates the accuracy of acceleration and deceleration event prediction and 

is the weighted sum and re-normalization of the acceleration and deceleration prediction performance 

results. The indicator considers the prediction quality of acceleration and deceleration from quantity, 

location, and area, and the percentage difference between the predicted results and expert 
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identification for acceleration and deceleration was calculated. Therefore, the smaller the indicator 

value, the better the performance. The specific formula is shown below. 

 SI =
ASI+2DSI

3
  (8) 

 ASI = √
∑ (Acc.P

i
−Acc.E

i
)2A

i=1

∑ max(Acc.Pi,Acc.Ei)
2A

i=1

× 100%  (9) 

 DSI = √
∑ (Dec.Pi−Dec.Ei)

2D

i=1

∑ max(Dec.Pi,Dec.Ei)
2D

i=1

× 100%  (10) 

MADI appears to be a rough assessment of the morphological differences between both baselines 

for prediction and sample identification over time series. The smaller the indicator value, the better 

the performance. The specific formula is shown below. 

 MADI =
1

n
∑

(BL.Pi−BL.Ei)
2

(D
FHR

BL.P
)

i
 × (D

FHR

BL.E
)

i
 + (BL.Pi−BL.Ei)

2
 

n

i=1
  (11) 

 (D
FHR

x
)

i
=  α + √∑ (xj−FHRj)

2i+120

j=i−120

240
  (12) 

Where, BL. P and BL.E are the predicted baseline and expert annotated baseline of the algorithm, 

respectively, and n is the total data volume of the FHR signal (the signal is 240 data volumes per 

minute, i.e. 4Hz). The average fetal heart rate variability  of DFHR
x  within 1 min. around the current 

sample (using baseline x as a reference).  

3.5. Results  

The model for this test was built on Python using a Keras backend based on the TensorFlow 

framework.  

Among the above indicators, higher values for Dec. F-measure and Acc. F-measure indicate better 

method performance, whereas lower values for BL. RMSD, SI, and MADI signify superior outcomes. 

By comparing the judgment results generated by different automatic analysis methods with those 

generated by expert consensus, the study reveals the inconsistencies between algorithm predictions 

and expert consensus. The median values [95% confidence intervals] of the five indicators mentioned 

above were calculated for comparison. 

The 331 test datasets from the Huayi database were used to validate the accuracy and 

generalization of the model. Furthermore, to gain a clearer and more intuitive understanding of the 

performance of the model proposed based on deep learning methods, the WMFB algorithm, which 

currently has the best comprehensive performance, was used to compare five performance indicators. 

Additionally, the performance of the model parameters obtained using only U-net was also tested to 

visually demonstrate the basic performance of deep learning algorithms. 
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Table 2: Comparison between EADU-Net and WMFB methods 

Method  
BL.RMSD 

(bpm)  
Dec. F-measure  Acc.F-measure  SI (%)  MADI (%)  

WMFB  
1.92 

[1.80; 2.09] 

0.67 

[0.67; 0.75] 

0.73 

[0.69; 0.76] 

55.2 

[48.6; 60.7] 

3.71 

[3.39; 4.02] 

EU-Net  
1.97 

[1.83; 2.19] 

0.75 

[0.67; 0.84] 

0.85 

[0.82; 0.88] 

46.1 

[38.4; 53.3] 

3.74 

[3.33; 4.16] 

EADU-Net  
1.78 

[1.66; 1.93] 

0.80 

[0.75; 0.86] 

0.88 

[0.86; 0.90] 

38.35 

[30.0; 46.1] 

3.16 

[2.75; 3.42] 

 

The test data shows in table 2 that the EADU-NET model proposed achieves higher performance 

in five indicators (including two comprehensive evaluation indicators and three single evaluation 

indicators). At the same time, the performance of the basic deep learning model U-net is not inferior 

to the currently known optimal WMFB algorithm.  

4. Conclusion 

A detailed description of the process of using deep learning's EDAU-Net was provided for automatic 

feature extraction of FHR signals. The training and validation phases utilized 66 expert annotated 

data from the French Lille Database, while 331 data from Overseas Chinese Hospital were used to 

test the network's feature analysis performance. Specific filtering was used to address the noise 

introduced in clinical signal acquisition. The filtered data was cropped to obtain enhanced data sub-

segments from the signal data due to the issue of varying recording times and excessively long 

recording times. Theses sub-segments were then fed into the neural network for predicting and 

locating the acceleration and deceleration regions. The predicted data from the network was obtained, 

and the processed data was concatenated in a certain way, Subsequently, an automatic baseline 

calculation was performed. The baseline calculation principle was based on the quadratic filtering of 

both filters, long-term and short-term, to obtain the predicted fetal heart rate baseline under the 

network algorithm.  

The performance of FHR signal feature extraction was evaluated based on EDAU-Net using five 

indicators to assess the performance of feature analysis. The five performance indicators of the 

network proposed were superior to the WMFB algorithm compared with the WMFB algorithm, which 

has the best performance among traditional methods. The results indicated that the network proposed 

has higher performance, with feature analysis results obtained by the algorithm showing the smallest 

difference from the expert's interpretation results.  
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