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Abstract: In this study, we applied nine diverse machine learning models to conduct an in-

depth analysis of customers’ subscriptions to bank term deposits, which enable banks to 

optimize their marketing strategies and enhance customer loyalty. Among these models, the 

Categorical Boosting (CatBoost) model demonstrated the superior performance, achieving an 

impressive accuracy of 90.91% and an AUC of 93.82%. However, the prediction result of 

this “black box” model can be hardly interpreted, which may pose potential risks in practical 

applications. To address this issue, the Shapley Additive Explanations (SHAP) were 

employed, offering both local and global interpretability to enhance the reliability and 

transparency. In conclusion, this study aims to provide valuable insights into the bank term 

deposit subscription prediction with the ML models, such as CatBoost, and the SHAP 

interpretability method.  

Keywords: term deposit subscription, SHAP, Model interpretability, CatBoost, Machine 

learning (ML). 

1. Introduction 

In the financial sector, analyzing bank term deposit data is significant, especially in optimizing 

marketing strategies and enhancing customer loyalty. By examining customers' financial status, age, 

profession, and income level, banks can identify customer segments more likely to subscribe to term 

deposits, allowing for more targeted marketing efforts [1]. Additionally, term deposits provide a 

stable source of funds, and by analyzing deposit data, banks can better forecast funding needs and 

allocate resources to balance liquidity and profitability [2]. 

With the advancement of artificial intelligence technology, complex ML models, like deep neural 

networks and random forests, have recently achieved significant results in bank marketing [3-6]. 

However, due to their complex internal structures and nonlinear characteristics, these so-called "black 

box" models’ decision-making procedures are mostly challenging to comprehend. More trust in the 

model’s ouput is required as a result of this opacity, especially in high-risk fields such as healthcare, 

finance, and autonomous driving. Therefore, conducting in-depth research on the interpretability of 

ML models is essential. This not only helps to understand the basis of model decisions, but also 

improves the model’s credibility and transparency, avoiding bias and discrimination and thereby 

better serving practical applications. 

To ensure the fairness and reliability of the final decisions, this paper employs multiple ML models 

to predict outcomes on a bank term deposit dataset, selecting the best-performing model for further 
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in-depth analysis. In addition, the model's interpretability is assessed by the SHAP [7] analysis, 

revealing features that influence the prediction results and their contributions to the model's decisions. 

This approach offers a more transparent and comprehensible analysis, meeting increasingly strict 

regulatory requirements and helping the bank better understand the model's decision-making logic, 

ultimately optimizing strategies [8]. 

After the introduction, this paper unfolds through a structured sequence of sections. We initiate a 

brief literature review of previous works, then focus on the methodology employed for predicting 

bank term deposits, highlighting the selection and implementation of various ML models. Following 

this, the results of the SHAP analysis will be presented to demonstrate the key factors influencing 

model predictions. Finally, a short conclusion will be made. 

2. Literature Review 

2.1. Customer behavior insights to enhance banking decisions 

Understanding customer behavior is crucial in the banking industry, as accurate insights into customer 

characteristics and needs can help improve marketing strategies, enhance customer retention, and 

manage financial risks. One critical approach is clustering analysis, which groups customers based 

on shared characteristics to optimize resource allocation and enable tailored financial products. Using 

time series clustering, Abbasimehr and Shabani [1] proposed a dynamic approach for customer 

segmentation. They identified key customer groups such as 'high-value growing' and 'churn-prone' 

segments, allowing tailored strategies for each group. Calvo-Porral and Lévy-Mangin [9] categorized 

bank customers based on emotions experienced during service interactions into groups including 

'angry complainers' and 'happy satisfied.' This method proved significant for predicting behaviors like 

loyalty and complaint likelihood.  

Another crucial area is credit scoring, where banks evaluate customer creditworthiness to reduce 

default risk. Recent studies have introduced hybrid models to improve accuracy without sacrificing 

clarity. A deep genetic hierarchical network was developed by Pławiak et al. [10], demonstrating the 

state-of-the-art accuracy. Dumitrescu et al. [11] created the penalized logistic tree regression model, 

integrating decision-tree features into logistic regression to capture complex patterns that standard 

logistic regression might overlook. Nevertheless, de Lima Lemos et al. [12] predicted customer churn 

using a comprehensive dataset from a large Brazilian bank. 

2.2. Predicting deposit subscription based on ML 

ML has emerged as a critical approach in predicting customer deposit subscriptions, offering banks 

advanced tools to analyze complex datasets and improve decision-making through more accurate and 

data-driven predictions. Lu et al. [5] developed an artificial immune network (AIN), which was 

enhanced by feature selection, demonstrating improved accuracy and effectiveness in addressing 

class imbalance issues within financial recommendation systems. By refining the S_Kohonen 

network, Yan et al. [6] presented an enhanced whale optimization algorithm, demonstrating 

significant improvements in classification accuracy of successful bank telephone marketing. 

Ghatasheh et al. [4] enhanced the accuracy of predicting bank clients' response to term deposit 

products in imbalanced datasets by employing cost-sensitive analysis and artificial neural networks, 

offering data-driven insights for telemarketing decisions in the banking industry. Feng et al. [3] 

introduced dynamic ensemble selection, which integrates precision and profit maximization for 

predicting bank telemarketing sales success.  

While ML models have demonstrated superior accuracy in predicting customer deposit 

subscriptions, Carvalho et al. [13] emphasized that the internal logic and workings of these ‘black 

boxes’ remain difficult for users and experts to understand. This challenge highlights the growing 
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need for interpretability techniques that can explain complex models without compromising their 

predictive power, leading to increased focus on interpretability analysis in ML applications. 

2.3. Interpretability analysis for ML  

The ability to provide meaning in a way that people can comprehend is known as interpretability [14]. 

Various interpretability methods have emerged in recent years to clarify how ML methods make 

decisions. LIME (Local Interpretable Model-agnostic Explanations) [15] approximates complex 

models locally with simpler, interpretable models to evaluate how individual features affect particular 

prediction. Its flexibility makes it suitable for a wide range of models, but it primarily offers local 

explanations, which limits its ability to provide consistent global insights.  

SHAP [7] builds on Shapley values from game theory, providing a unified framework to attribute 

each feature’s contribution to the model result. Unlike LIME, it ensures consistency by delivering 

local and global explanations, allowing the sum of feature contributions to match the model’s 

production. In the financial sector, this method is increasingly valued for tasks like credit risk 

assessment and fraud detection, as it enables institutions to manage risks effectively, comply with 

regulatory requirements, and gain valuable insights into customer behavior. 

This paper employs a systematic approach to analyze subscription predictions for bank term 

deposits. Utilizing a dataset specifically related to bank term deposits, various ML methods are used 

to predict customer subscriptions. Model that demonstrates the best performance is chosen for further 

evaluation. Finally, SHAP performs an interpretability analysis, offering insights into the key factors 

influencing customer decisions regarding term deposits. 

3. Methods 

3.1. Data Collection and Preprocessing 

The dataset used in this study was collected from Kaggle [31], focusing on bank term deposit 

subscriptions (TDS). It comprises one target variable and 15 features related to customer 

demographics, financial information, and contact history with the bank, which are crucial for 

predicting whether a customer will subscribe to a term deposit. The dataset includes numeric and 

categorical features, as shown in Table 1. 

Table 1: Definition of features. 

Type Feature Description 

N age age of the customer 

C job 

type of the customer’s job, includes "admin", "unknown", "unemployed", 

"management", "housemaid", "entrepreneur", "student", "blue-collar", 

"self-employed", "retired", "technician" and "services" 

C marital 
marital status of the customer, includes "married", "divorced" (or 

"widowed"), "single" 

C education 
education level of the customer, includes "primary", "secondary", 

"tertiary" 

C default whether the customer has a credit in default, includes "yes" and "no" 

N balance average yearly balance, in euros 

C housing whether the customer has a housing loan, includes "yes" and "no" 

C loan whether the customer has a personal loan, includes "yes" and "no" 

C contact type of contact, includes "unknown", "telephone" and  "cellular" 

N day last day of contact of the month 
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C month 
last month of contact of the year, includes "jan", "feb", "mar", …, "nov" 

and "dec" 

N duration duration of last contact, in seconds 

N campaign 
number of contacts made for this customer during this campaign, includes 

the most recent contact 

N pdays 
number of days passed by after last contact (-1 means not previously 

contacted) 

N previous number of contacts made before this campaign and for this customer 

C poutcome 
result of the previous marketing, includes "unknown", "other", "failure" 

and "success" 
* N and C of Type denote numeric and categorical. 

 

Following an initial exploration of the dataset, preprocessing steps were implemented to ensure its 

suitability for ML analysis. Given that the dataset contains all the values, imputation was unnecessary. 

The preprocessing procedures involved separate treatments for numerical and categorical features, 

with standardization and encoding methods. 

Numerical features, such as age, balance, and duration, were standardized using StandardScaler to 

ensure uniform scaling, which improves model performance and stability. For each numeric feature 

𝑥, the standardized value 𝑥′ was calculated as follows: 

 𝑥′ =
𝑥−𝜇

𝜎
 (1) 

where 𝑥 is the original feature value, 𝜇 is the mean of the feature across all samples, and 𝜎 is the 

standard deviation. This transformation centers the data around 0 with a standard deviation of 1. 

Categorical features, including job type, marital status, and loan status, were encoded using one-

hot encoding to transform them into binary vectors. Given a categorical feature with 𝑘  unique 

categories, each category was transformed into a binary vector of length 𝑘 , with a value of 1 

indicating the presence of the category and 0 otherwise. This process enables categorical features to 

be used in the model without implying any ordinal relationship. 

3.2. ML Implementation 

The ML methods applied in this study can be organized into two main categories: individual machine 

learning (IML) and ensemble learning (EL). Within the IML category, the simple and effective 

algorithm known as Decision Tree (DT) [16] divides data according to feature values [17]. The 

recursive partitioning enables DT to capture complex patterns, thus appropriate for a variety of tasks 

[18]. 

Multiple models are combined by EL to improve predictive accuracy and robustness, which can 

be divided into three main methods: boosting, bagging, and stacking [19]. Bagging [20] enhances 

predictions from random training sets, boosting overall accuracy and robustness [21]. Random Forest 

(RF) [22] is a popular bagging approach that constructs decision trees on bootstrap samples and 

outputs the majority vote. Moreover, the Extra Tree Classifier (ET) [23] randomly selects features 

and thresholds for faster training and better performance, especially on large datasets. 

Several boosting methods were also employed to enhance predictive performance. Specifically, 

AdaBoost (Adaptive Boosting) [24] improves classification performance by focusing on 

misclassified instances. Initially, each training instance is assigned an equal weight. For each iteration 

𝑡, a weak learner ℎ𝑡(𝑥) is trained, and its weight is computed as: 

Table 1: (continued). 
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 𝛼𝑡 =
1

2
log⁡(

1−𝜀𝑡

𝜀𝑡
) (2) 

where 𝜀𝑡 represents the classifier’s error rate, and it can be found as:  

 𝜀𝑡 = 𝑃[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖 = ∑ 𝐷𝑖(𝑖)𝐼[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖]
𝑛
𝑖=𝑛 ] (3) 

GBDT (Gradient Boosting) [25] builds models sequentially, where each new model is trained to 

correct the previous errors, thus minimizing the loss function 𝐿(𝑦, 𝐹(𝑥)). In each iteration 𝑚, a weak 

learner ℎ𝑚(𝑥) is trained on the negative gradient, capturing the errors of the previous model. The 

rule is given by: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1
(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) (4) 

where 𝛾𝑚 represents the learning rate. 

XGBoost (Extreme Gradient Boosting) [26] is the optimized version of GBDT that includes 

regularization to prevent overfitting: 

 𝐿𝑀(𝐹(𝑥𝑖)) = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))
𝑛
𝑖=1

+ ∑ Ω(ℎ𝑚)
𝑀
𝑚=1

 (5) 

where Ω(ℎ𝑚) represents the regularization term. 

LightGBM [27] is an efficient gradient boosting framework for high-dimensional data and large 

datasets. Instead of level-wise, it grows trees leaf-wise, selecting the leaf with the highest gain, 

improving both accuracy and efficiency. The formula can represent this approach: 

 𝐺𝑎𝑖𝑛 =
1

2
(

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)
2

𝐻𝐿+𝐻𝑅+𝜆
) − 𝛾 (6) 

where 𝐺𝐿 and 𝐻𝐿 , 𝐻𝑅  and 𝐺𝑅 respectively represents the sums of gradients and Hessians for the 

left and right child nodes. 𝜆 is regulation parameter and 𝛾 is leaf penalty. 

CatBoost (Categorical Boosting) [28] was designed to effectively handle categorical features 

without extensive preprocessing. It randomly permutes the training set and calculates the average 

label for samples with the same categorical value. If 𝜎(𝜎1, ⋯ , 𝜎𝑛) denotes the permutation, then the 

value is updated as: 

 𝑥𝜎𝑝,𝑘 =
∑ [𝑥𝜎𝑗,𝑘

=𝑥𝜎𝑝,𝑘]𝑌𝜎𝑗+𝛼𝑝
𝑝−1

𝑗=1

∑ [𝑥𝜎𝑗,𝑘
=𝑥𝜎𝑝,𝑘]𝑌𝜎𝑗+𝛼

𝑝−1

𝑗=1

 (7) 

where 𝑝 is a prior value and 𝛼 is its weight.  

This study applied nine previously discussed ML models to predict bank term deposit subscription. 

Each model's performance was assessed based on accuracy, precision, and additional robustness 

measures. CatBoost demonstrated the highest predictive capabilities among the models, showing 

notable accuracy and consistency across various metrics, underscoring its suitability for this 

classification task. 

3.3. Interpretability Analysis with SHAP 

To obtain a better understanding of how each feature affects predictions, SHAP was applied. Rooted 

in cooperative game theory [29], it attributes a “SHAP value” to each feature, assessing its 

contribution to the model’s output [7]. This method offers local interpretability, explaining individual 

predictions, and global interpretability, identifying the most influential features across the entire 

dataset. 
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For individual predictions, SHAP explains the specific impact of each feature on the outcome. For 

instance, in the case of a positive prediction (where the model predicts a bank deposit subscription), 

this method can show how each feature (e.g., balance, age, or previous contacts) influenced the model 

towards this outcome. The SHAP value 𝑆𝐻𝐴𝑃(𝑥𝑖𝑘) for the feature 𝑥𝑖𝑘 is computed as: 

 𝑆𝐻𝐴𝑃(𝑥𝑖𝑗) = ∑
|𝐵|!(|𝐴|−|𝐵|−1)!

|𝐴|!𝐵⊆𝐴{𝑖} [𝐹𝐵∪{𝑖}(𝑥𝐵∪{𝑖}𝑗) − 𝐹𝐵(𝑥𝐵𝑗)⁡ ] (8) 

 𝐹𝐵(𝑥𝐵𝑗) = 𝐸[𝐹𝐵(𝑥𝐵𝑗)] + ∑ 𝑆𝐻𝐴𝑃(𝑥𝑖𝑗)
|𝐵|

𝑖=1
 (9) 

where 𝑥𝑖𝑗 represents the 𝑖 th feature in the j th variable set, while 𝐴 is the total set of all features 

and 𝐵 can include any combination of features without 𝑥𝑖. The function 𝐹𝑁 correlates variables 

based on 𝑥𝑁, the set of features 𝑁. 𝐸[𝐹𝑁] is the expected outcome of 𝐹𝑁. 

4. Results 

4.1. Model Performance Evaluation 

To comprehensively and reliably evaluate the ML methods previously discussed for predicting bank 

term deposit subscriptions, we perform comparisons using six standard evaluation metrics: accuracy, 

recall, precision, F1-score, specificity, and area under the curve (AUC). These metrics can be derived 

from the confusion matrix presented in Table 2 for this binary subscription prediction. 

Table 2: Confusion matrix for term deposit prediction. 

  Predicted condition 

  Successful subscription Failed subscription 

Actual condition Successful subscription True positives (TP) False negatives (FN) 

 Failed subscription False positives (FP) True negatives (TN) 

Specifically, Accuracy calculates the percentage of correct predictions (both TP and TN) among 

total predictions: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (10) 

Recall (or sensitivity) indicates how well the model identifies positive instances, while Precision 

reflects the accuracy of the positive predictions: 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

Then, F1-score offers a balanced measure between Precision and Recall: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (13) 

Additionally, AUC evaluates the model's capacity to differentiate between positive and negative 

classes, where higher values reflect stronger discriminative performance: 

 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑋))𝑑𝑥
1

0
 (14) 

As shown in Table 3, CatBoost [28] outperformed the other methods across multiple key 

evaluation metrics. With an impressive accuracy of 0.9091, it demonstrated the highest level of 

overall prediction correctness. CatBoost also achieved a balance between recall and precision, 
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18.45% higher than the worst method, DT, in terms of F1-score. The balance enables the effective 

identification of positive instances while minimizing false positives. Furthermore, the AUC of 0.9382 

highlights CatBoost's outstanding prediction, solidifying its position as the optimal choice among 

those evaluated.  

Table 3: Performances of different ML methods. 

Method 
Evaluation metric 

Accuracy Recall Precision F1-score AUC 

DT [16] 0.8731 0.4904 0.4747 0.4824 0.7080 

Bagging  [20] 0.8991 0.4235 0.6201 0.5033 0.8878 

RF [22] 0.9056 0.4134 0.6782 0.5137 0.9272 

ET [23] 0.8987 0.3648 0.6409 0.4650 0.9098 

AdaBoost [24] 0.8979 0.3767 0.6284 0.4711 0.9084 

GBDT [25] 0.9034 0.4198 0.6552 0.5117 0.9218 

XGBoost [26] 0.9069 0.5133 0.6429 0.5708 0.9306 

LightGBM [27] 0.9048 0.4922 0.6363 0.5550 0.9343 

CatBoost [28] 0.9091 0.5023 0.6626 0.5714 0.9382 

To further improve the CatBoost model’s overall performance, grid search was used as an 

optimization method to tune key hyperparameters. Specifically, iterations, depth, learning rate and 

l2_leaf_reg were adjusted within a predefined range, as introduced in Table 4. The results of the grid 

research indicated that the optimal combination of hyperparameters [iterations = 500, learning_rate 

= 0.05, depth = 6, l2_leaf_reg = 5] led to the highest accuracy, thereby maximizing the model’s 

performance.  

Table 4: Optimized hyperparameters of the CatBoost model. 

Hyperparameter Definition Search interval 

iterations The number of boosting iterations during training. 100, 200, 300, 500 

learning_rate The learning rate of the model. 0.01, 0.05, 0.1, 0.2 

depth The max depth of the decision trees. 4, 6, 8, 10 

L2_leaf_reg The coefficient for L2 regulation on leaf weights. 1, 3, 5, 7, 9 

4.2. SHAP Interpretability Analysis 

To gain deeper insight into the decision-making process of CatBoost, SHAP was employed to provide 

both local and global interpretations of the model's predictions. For local interpretation, SHAP’s 

waterfall plot visualizes how each feature contributes to the predicting individual instances. For 

global interpretation, the feature importance plot ranks features based on their overall contribution to 

the final predictions. 

4.2.1. Local interpretation 

The red arrow in a waterfall plot signifies a positive SHAP value, which means that this feature 

contributes to pushing the prediction toward a positive outcome. Meanwhile, the blue arrow 

correspondingly indicates a negative SHAP value. The length of each arrow illustrates the strength 

of the positive or negative influence.  

When analyzing the classification predictions of CatBoost model using SHAP, the predicted 

values are converted into log odds ratio. As shown in Figure 1, the mean log odds ratio of the expected 

subscription, E[f(x)], is -4.164. For this specific customer, the log odds ratio, f(x), is -6.572, indicating 
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a relatively low subscription probability. This suggests that the customer’s profile is less aligned with 

the characteristics of term deposit subscribers, indicating a lower likelihood of subscription.  

 

Figure 1: Local interpretation of TDS prediction using waterfall plot. 

In addition, since the categorical features had undergone one-hot encoding during the data 

preprocessing stage, the final features only take values of 0 or 1, which may affect the clarity of the 

waterfall plot. Therefore, we mapped the encoded features back to their original categories and 

aggregated the SHAP value accordingly. 

Specifically, duration had the largest negative contributions to this customer’s subscription, with 

the SHAP value of -2.52. It is followed by the day, housing and job, corresponding to SHAP values 

of -0.47, -0.37 and -0.31. Nevertheless, month and contact were the top two positive contributors, 

with the SHAP values of +0.57 and +0.51. This visualization clarifies how specific feature values 

impact the model’s prediction for a given customer. 

4.2.2. Global interpretation 

A SHAP feature importance plot was employed to obtain a global comprehension of the factors 

influencing the CatBoost model’s prediction. Unlike traditional feature importance calculations, this 

bar chart ranks the features based on their overall importance, measured by their mean absolute SHAP 

values across all the given samples. This ranking provides a clear picture of which features contribute 

most to the model's predictions. 

Similar to section 4.2.1, the categorical features were one-hot encoded during preprocessing, 

which may reduce the clarity of the feature importance plot. To address this problem, we mapped the 

encoded features back to their original categories and aggregated the mean absolute SHAP values 

accordingly. 

As depicted in Figure 2, the duration holds the highest importance, with a value of 1.54, which 

means this feature plays a key role in determining the likelihood of a customer’s subscription to a 

term deposit. After this, contact and month also influence the outcome considerably, with the mean 

absolute SHAP values of 0.66 and 0.52. In contrast, features like previous, pdays and default 

demonstrate the values of less than 0.1, indicating that these factors have a relatively less impact on 

the prediction results. 
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Figure 2: Global interpretation of TDS prediction using feature importance plot. 

In general, the interpretability analysis based on SHAP provides insights into each feature’s local 

and global importance, enhancing the model’s transparency and offering guidance for improving 

model performance and refining feature selection.  

5. Conclusion 

This paper aims to provide valuable insights into the bank term deposit subscription prediction based 

on the state-of-the-art integrated tree model, CatBoost, and the SHAP interpretability method. Among 

the selected nine ML models, CatBoost presented the superior performance, which was further 

optimized through grid search. In addition, integrating global and local interpretations based on SHAP 

offered an in-depth understanding of the each feature’s contribution and the model’s decision-making 

process. Future research should explore the potential of other advanced methods and their application 

in real-word scenarios.  
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