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Abstract: Convolutional Neural Networks (CNNs) have broad application prospects in 

computer vision, image processing, and other fields. However, their characteristics, such as 

high computational speed and large data volume, pose significant challenges for hardware 

implementation. This project aims to improve computational efficiency and reduce energy 

consumption by summarizing hardware-based convolutional neural network algorithms to 

meet real-time requirements. Additionally, it will summarize research methods for 

accelerating convolutional computation, pooling, and fully connected layers using different 

hardware platforms such as ASIC, FPGA, and GPU. This paper focuses on optimizing data 

flow, parallel processing, and memory architecture to reduce computation latency and energy 

consumption. To ensure network accuracy, methods such as quantization and pruning are 

employed to reduce model size and computational complexity. Literature indicates that 

custom hardware designs for convolutional neural networks significantly enhance 

performance and energy efficiency compared to traditional software implementations. This 

review aims to provide an efficient hardware acceleration method for practical deep learning 

algorithms and promote development in fields such as smart terminals and edge computing. 
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1. Introduction 

Convolutional Neural Networks (CNNs) are an emerging machine learning method with significant 

application prospects in image processing and computer vision. With the rapid development of deep 

learning technology, hardware-based convolutional networks have become a current research hotspot. 

Although CNNs perform excellently in computer vision and image processing, their large 

computational and data requirements often lead to efficiency and speed bottlenecks in software 

implementations [1][2]. Therefore, utilizing hardware to enhance the performance of convolutional 

neural networks is particularly important. For instance, CNNs involve many matrix operations and 

convolution calculations, which are time-consuming for conventional CPUs. By integrating 

specialized hardware such as ASIC, FPGA, and TPU, the parallel performance of networks is greatly 

improved, accelerating both training and inference speeds. Furthermore, the computational demands 

of convolutional neural networks often require substantial energy, especially in large-scale 

applications, while dedicated hardware can effectively reduce network power consumption, thereby 

enhancing system energy efficiency and making it more suitable for mobile terminals and edge 

devices. 
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In applications such as autonomous driving and intelligent monitoring, the scenarios for 

convolutional neural networks often require high real-time computing capabilities[3]. Hardware 

design can effectively reduce network latency and utilize efficient computational architectures to 

meet real-time processing needs. Overall, this project aims to embed convolutional neural networks 

into various terminals (such as embedded systems and edge computing) to expand their application 

fields and promote the widespread use of deep learning. 

2. Current Research Status and Development Trends 

2.1. Domestic Research Status 

Tsinghua University has independently developed the intelligent hardware platform Thinker, which 

aims to achieve dynamic optimization for various deep learning tasks using a configurable computing 

framework.[4] The design philosophy of Thinker is to improve energy efficiency and computational 

performance by flexibly configuring hardware resources to adapt to different application scenarios. 

The project's features include: using multiple general-purpose computing modules (PES) in the 

computation module to support different computational tasks such as convolution, fully connected 

layers, and pooling. The storage module integrates high-performance memory modules, effectively 

connecting various computing modules through special data channels to reduce data transfer latency. 

The unique controller module realizes dynamic allocation of computational resources and flexibly 

adjusts the working modes of each module. The adaptive computing architecture dynamically 

configures computing resources based on the requirements of different deep learning tasks, enabling 

efficient operation of different types of computations on the same chip.In the data interaction section, 

thinker has implemented two 144KB local buffers, which can implement pingpong operations for 

calculation and storage. Each local buffer is divided into 48 entries that can provide 48x16 bits of 

data bandwidth. For two 16x16 matrices, 32 entries are sufficient. ports corresponding to the 

remaining 16 entries provide additional data read and write channels after PE array reconstruction. 

And from the algorithm description, thinker also provides a convolutional data decompression 

method, can achieve the convolution data supply with a smaller number of ports. 

2.2. International research status 

Among numerous recent international studies, Microsoft Project Brainwave stands out, aiming to 

provide high-performance, low-latency hardware acceleration solutions for deep learning inference 

using Field Programmable Gate Arrays (FPGAs)[5]. Due to their flexibility and reconfigurability, 

FPGAs are suitable for addressing different deep learning models and real-time inference 

requirements. The design philosophy of Project Brainwave is to use FPGAs as hardware accelerators 

to dynamically deploy and optimize the inference process of various deep learning models. Through 

DMA technology, data can be directly transferred between memory and computing units, reducing 

CPU involvement and minimizing data transfer latency. A layered data flow architecture is designed 

to separately manage computation and data transfer, optimizing data transfer paths and enhancing 

overall computational efficiency. The dynamically reconfigurable computing resources provide a 

unified hardware abstraction layer, allowing different models to switch seamlessly on the same FPGA, 

improving resource utilization. An automatic optimization mechanism converts and quantizes deep 

learning models to make them more suitable for FPGA hardware execution, reducing latency. It also 

supports various deep learning models, achieving an efficient data flow architecture. 
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3. Key theories and technologies 

3.1. Quantization and fixed point operations 

A real-time CNC (Computer Numerical Control) mechanical fault detection solution is proposed, 

using a Binary Weight Convolutional Neural Network (BNN) to identify vibration signals, achieving 

an accuracy of 95.07% on an FPGA at a working frequency of 130 MHz. By converting operations 

to fixed-point calculations, computational speed is significantly improved, and memory usage is 

reduced.[6] This research not only focuses on model accuracy but also considers the hardware 

implementation costs, meeting the needs of industrial applications and enabling real-time monitoring 

and self-prevention of mechanical failures, thereby reducing maintenance costs and downtime. By 

quantizing and optimizing the network structure, hardware resource usage is minimized, making it 

suitable for deployment in resource-constrained environments. 

A new YOLO CNN model (tiny-YOLO-Inception-ResNet2) combines the Inception-ResNet 

module, optimizing computational efficiency [7]. The study investigates the impact of varying the 

number of computing units on image detection time, finding that increasing computing units can 

linearly enhance performance. When using 32-bit floating-point numbers, it maintains detection 

accuracy comparable to software implementations. This model optimizes computational speed while 

preserving high accuracy, making it suitable for real-time image processing applications. By 

removing batch normalization operations, the model's computational complexity is simplified, 

reducing power consumption, and is applicable in scenarios requiring efficient image recognition, 

such as drones, with broad application potential. 

3.2. Unified computing unit and floating-point calculation 

A convolutional neural network for image recognition, consisting of 7 layers, achieves a prediction 

accuracy of 99.54% [8]. By employing a model-driven design approach, the network architecture is 

simplified and optimized on an FPGA, enabling fixed-point format calculations. This research 

demonstrates the efficiency of FPGAs in image recognition, suitable for applications requiring rapid 

processing, such as medical, autonomous driving, and quality control. By optimizing the network 

structure and reducing the number of filters, although accuracy decreases, it remains within an 

acceptable range for practical applications. The flexibility of hardware implementation allows the 

network to be adjusted according to different needs, showcasing good adaptability. 

3.3Logarithmic and exponential computing units and Microarchitecture design 

A multi-sensor fire detection system based on fuzzy logic and convolutional neural networks 

(CNNs) can process monitoring videos in real-time and detect fires [9]. The system integrates 

multiple sensors (smoke, flame, and temperature) to enhance detection accuracy and classifies video 

streams using CNNs, developing a web and mobile-based real-time alert notification system that 

promptly informs users and fire departments in the event of a fire. The system effectively handles 

noisy data by combining fuzzy logic and CNNs, improving fire detection accuracy and reliability. 

Using multiple sensors overcomes traditional sensors' limitations in detecting fires over large areas, 

providing a more comprehensive fire monitoring solution. The system's navigation feature helps 

firefighters quickly reach fire scenes, enhancing response speed, especially in areas with unclear 

addresses. 

3.3. Multiple parallel MAC unit 

An efficient CNN hardware architecture employs approximate arithmetic operations to reduce the 

complexity of multiplication and addition operations, thereby improving processing speed and 

reducing power consumption. By using Dynamic Range Unbiased Multipliers (DRUM) and 
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approximate adders, a CNN accelerator suitable for ASIC implementation is designed [10]. This 

accelerator maintains high accuracy while reducing chip area by 15% and significantly lowering 

power consumption, making it suitable for resource-constrained environments. The use of 

approximate arithmetic leverages CNNs' tolerance for small errors, allowing hardware design 

optimization without significantly sacrificing accuracy. The flexibility of this architecture enables it 

to adapt to different CNN models, showcasing broad application potential. 

3.4. GSM module and multi-sensor data fusion 

A dedicated computing core is designed to handle bipolar morphological convolutions, reducing the 

need for multiplication operations and thereby lowering hardware costs [11]. The bipolar 

morphological model significantly simplifies calculations (using addition and maximum operations), 

making it suitable for hardware implementation. Although the bipolar morphological model slightly 

lags behind classical models in latency, it excels in hardware resource utilization and power 

consumption. 

4. Limitations and future development directions 

Overall, despite the excellent performance and energy efficiency of FPGAs and other hardware 

accelerators, there are still resource limitations when implementing complex CNNs. Particularly 

when processing large-scale models, hardware resource constraints can lead to performance 

bottlenecks. Although researchers have optimized models, balancing high accuracy with reduced 

computational complexity remains a challenge. Existing optimization methods often require trade-

offs between accuracy and speed, making it difficult to find the optimal balance. In practical 

applications, further reducing energy consumption is also a significant concern, especially in mobile 

devices and embedded systems, where improving energy efficiency is crucial. 

Future research should focus on developing more efficient model compression techniques, such as 

pruning, quantization, and knowledge distillation, to reduce computational demands and storage 

requirements while maintaining high accuracy. By combining the advantages of FPGA, GPU, and 

CPU, a heterogeneous computing architecture that collaborates between software and hardware 

should be constructed to achieve higher computational performance and flexibility. When designing 

new hardware accelerators, greater attention should be paid to improving energy efficiency, 

particularly in mobile and edge computing devices, where developing low-power, high-performance 

solutions will be an important direction. 

By conducting in-depth research and exploration of these limitations, future work can further 

advance convolutional neural networks and their hardware acceleration technologies to meet the 

growing application demands. 

5. Conclusion 

This article explores the hardware implementation and optimization of convolutional neural networks 

(CNNs) in various applications, covering fire detection, CNC mechanical fault diagnosis, image 

recognition, and more. 

The multi-sensor fire detection system based on fuzzy logic and CNNs integrates sensor data and 

video processing to enhance early fire detection and alarm capabilities. This system overcomes the 

limitations of traditional methods by fusing multiple fire features. The FPGA-based YOLO subclass 

CNN model focuses on real-time image processing, emphasizing the balance between improving 

computational speed and accuracy in hardware implementation. Research indicates that using 32-bit 

floating-point calculations can maintain high detection accuracy. 
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Focusing on CNC mechanical fault detection, a binary weight CNN hardware accelerator is 

proposed, utilizing vibration signals for fault identification. This method reduces hardware overhead 

through quantization operations and achieves real-time monitoring on FPGA. The efficient CNN 

hardware architecture employs approximate arithmetic operations to lower power consumption and 

area while maintaining high accuracy. Research shows that using approximate multipliers and adders 

has minimal impact on CNN performance [6]. 

The FPGA-based CNN image recognition system demonstrates high-precision image recognition 

achieved through model-driven design. Although network complexity is reduced during optimization, 

a high recognition rate is still maintained. The hardware implementation of classical and bipolar 

morphological models proposes a new computing core that replaces multiplication with addition and 

maximum operations, significantly reducing hardware costs. Research results indicate that the bipolar 

morphological model is competitive in speed and area but slightly lags behind classical models in 

latency [11]. 

Overall, these studies showcase the diversity and flexibility of CNNs in hardware implementation, 

emphasizing the importance of optimizing performance and reducing costs in various application 

scenarios. They provide more efficient and reliable solutions by combining advanced algorithms and 

hardware design, demonstrating significant practical application value. 
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