

A Study of Advances in Asynchronous FIFO Design

Qianyi Wang1,a,*

1School of Physics, Xi'an Jiaotong University, Xi’an, China

a. xjtuwqy@stu.xjtu.edu.cn

*corresponding author

Abstract: With the continuous development of the new generation of microelectronics, there

are several different clock domains in the complex digital systems. In order to iron out the

complications caused by data transfer and storage in different clock domains, the designer

used asynchronous FIFO (first in first out) in the design to realize cross-clock communication,

data buffer. By analyzing and studying a number of results on asynchronous FIFO, this paper

provides a comprehensive overview of the results of asynchronous FIFO up to now. This

paper mainly summarizes the study of using Gray code to solve the substable problem in

asynchronous FIFO, using the empty-full flag bit technique for the empty-full judgment of

reading and writing, and summarizes how to make the structure of cyclic Asynchronous FIFO,

and regulating the Asynchronous FIFO depth to improve their performance. For the practical

application of asynchronous FIFO-based, this paper summarizes the optimization techniques

of UART communication protocol based on asynchronous FIFO. the use of handshake signals

for asynchronous FIFO design based on handshake-synchronous cross-clock-domain

transmission technology is also a widely used technique for asynchronous FIFO.

Keywords: Asynchronous FIFO, Cross Clock Domain Processing, Verilog, Buffers,

Synchronizers, Substable.

1. Introduction

In modern large-scale integrated circuits, chips often contain multiple modules. Using different clock

domains for transmission is likely to cause data transmission problems when using the Asynchronous

FIFO design for cross-clocking across different clock domains [1][2].

Asynchronous FIFO have depth, width, empty flag, full flag, read pointer, read clock, write pointer,

and write clock. Asynchronous FIFO also has four major modules, which are the RAM module, the

write_address and write control ports, the read_address and read control ports, and the FIFO clock

synchronization module (two levels of registers). When writing data, the write pointer gradually

reaches the next address, the write_address plus one, when reading data, the read pointer and the

address are added to the next memory cell it reach, the read_address plus one, The state is write full

when the write pointer reaches the read pointer, and read empty when the read pointer reaches the

write pointer. Asynchronous FIFO utilize two levels of registers to synchronize the write clock and

the read clock, solving the problem of an unsynchronized clock domain. Nowadays, there are many

performance optimization schemes for Asynchronous FIFO. For example, designer use Gray code to

solve the substability problem, increase the bit width and the number of bits of the empty-full warning

flag. The applications of Asynchronous FIFO are numerous, such as the optimization of UART

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

14

communication protocols based on Asynchronous FIFO, etc. In this paper, The paper will present a

comprehensive overview of the current progress of the research on the design of Asynchronous FIFO.

2. Asynchronous FIFO design

2.1. Solving substability problems using gray codes and synchronization processing across

clock domains

2.1.1. Causes of sub-stability

Ideal circuits do not have a delay, register samples or triggers occur instantaneously, however, in real

circuits, the data needs to meet the requirements of the build-up time (the time that the data remains

stable before the arrival of the clock edge) and the hold-up time (the time that the data remains stable

after the arrival of the clock edge)[3]. Otherwise, a substable state is triggered, where the output signal

of the touch divider is indeterminate for a period of time before it stabilizes to a determinate value,

which is also not previously determinable.

2.1.2. Single-bit cross-clock domain processing

Due to the different clock domains, the circuit structure needs to be processed across clock domains

and designer usually uses level triggers to achieve this function. When the input signal enters the first

register, due to the failure to meet the hold time as well as the build-up time, the data produces a

substable state.The level flip-flop solves both the cross-clock domain as well as the substable problem

by tapping. When the first clock rising edge arrives, register one is substable after a delay. When the

second clock rising edge arrives the first register's has stabilized to a high or low level and after a

second sampling the complete signal is obtained in register two. In practice, two or more taps are

often used in order to further reduce the probability of substability [4].

2.1.3. Multi-bit cross-clock domain processing

In practical circuit design, multiple bits are often transmitted, and due to the delay in line transmission,

the delay of each bit is not consistent, resulting in data transmission errors and sub-stability when

sampling on the arrival of the same rising edge of the clock [2]. Accordingly, gray codes are used

instead of binary codes for data transmission.

Gray code any two neighboring codes only one binary number is different, for example, in the

process of using the binary code 8421 code, changing from 0111 to 1000, all four bits change, in the

FIFO at the same time to change more than one bit will increase the probability of starting the circuit

substable problem, so use the Gray code to reduce the occurrence of substability.

Conversion from binary to Gray code: from left to right, keeping the binary's highest bit as the

Gray code's highest bit, the value of the binary code's highest bit and the second-highest bit of the

XOR operations as the Gray code's second-highest bit, and so forth. as shown in Figure 1:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

15

Figure 1: Binary to gray code conversion schematic

Conversion from Gray code to binary: from left to right, retain the highest bit of the Gray code as

the highest bit of the binary, the next highest bit of the binary is the highest bit of the binary code and

the next highest bit of the Gray code for the value of XOR operations and so forth, as illustrated in

Figure 2:

Figure 2: Gray code to binary conversion schematic

It should be noted that the use of this method must satisfy two conditions, the first is that the design

is only used in the case of sequential increase in address or value, and the second point is that the

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

16

design must be synchronized from a slow clock to a fast clock, otherwise there will be a data sampling

omission.

2.2. Empty and Full Flag Bit, Void Full, Void Empty, and Asynchronous FIFO verilog code

implementation

When determining write full and read empty, the designer usually adds an empty full judgment flag

bit to the highest bit. A common practice is to add a bit to the leftmost of the pointer data as an

identification bit. For example, a depth of 8 ram, when the FIFO is full, write pointer changes to 1000

from 0111 and Gray code is 1100, however, read pointer Gray code is 0000. Regardless of the bit

width of the pointer, write pointer and read pointer Gray code of the upper two values of the opposite

and the last two of the same case is write full, write pointer read pointer Gray code is exactly the same

situation is to read the case of empty. Since there is a delay in synchronization across the clock domain,

there is a false full and a false null, when the read pointer is already pointing to the next bit and has

started to read the data, because of the delay, the write portion of the signal is still not received, so

the state is still a full signal.

Hongke Li et al. according to the principle of the implementation of asynchronous FIFO design of

the verilog code, the main module for the following aspects; FIFO memory settings, write counter to

read clock domain synchronization, read counter to write clock domain synchronization, Gray code

counter module, in addition to the two-stage synchronizer settings as well as the asynchronous FIFO

external interfaces, the external interfaces are defined in Table 1[5]:

Table 1: External interface definition for Asynchronous FIFO[5]

Pin Input/Output Function

rst_n Input Global reset signal, active-low

wclk Input Write Clock

rclk Input Read Clock

data_in[n-1:0] Input Write n-bit bit-width data

Data_out[n-1:0] Output Read n-bit wide data

Write_en Input
Write enable signal, active

high

Read_en Input
Read enable signal, active

high

full Output Full standard bit, active-high

empty Output
Empty standard bit, active -

low

Hongke Li et al. used two methods for simulation verification, one method is to write full and then

read empty directly at one time, the second method is to write full and then read out the data in two

times and read empty in two steps, and the simulation results are fully compliant with the design of

asynchronous FIFO.

2.3. A flexible FIFO-depth design

FIFO read/write operation changes, each gray code changes only one, taking into account the binary

code cycle to clear the zero, the depth of the FIFO must be 2 times the factorial, Bo Zhang designed

a more flexible structure, this structure can be set to any depth of the FIFO, closer to the actual

application scenarios. Bo Zhang will gray code cycle reset rules and binary code cycle reset rules are

designed separately, when the binary code due to the address cycle to clear 0, Gray code can not

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

17

follow the please 0, the design method in this paper, Gray code is designed to always not clear 0, the

use of Gray code data of the maximum bit width of the automatic clearing of 0[6].

After synchronization, the gray code of the read address is converted back to binary, and then the

gray code of the write address is converted back to binary, and the two are subtracted to get the

number of occupied as well as the number of free storage devices. The full state judgment flowchart

is shown in Figure 3, and an example of asynchronous FIFO random depth implementation is shown

in Table 2:

Figure 3: Flowchart for determining the full state[6]

Table 2: Examples of random depth implementations[6]

circle\signals w_addr wptr wsync_rptr wsync_fill_count

1 0000 0000 0000 0

2 0001 0001 0001 0

3 0011 0010 0001 1

… … … … …

13 1100 1010 0001 11

14 0000 1011 0001 12

15 0001 1001 0001 13

2.4. Optimization of UART communication protocol based on Asynchronous FIFO

FIFO chips are a new form of large-scale integrated circuit and being utilized increasingly in high-

speed data collection, highspeed data processing, high-speed data transmission, and multi-machine

processing systems[7]. Communication protocols are used to communicate between computers,

giving computers as well as network connections a standard that must be adhered to for

communication, UART (Universal Asynchronous Receiver/Transmitte) is a walk-through,

asynchronous communication protocol. Time-varying systems applied to UART communication

networks may cause system instability, resulting in timing chaos, data loss, transmission errors, etc.

Therefore, W. Wang used Asynchronous FIFO to design the buffers.,When the amount of write data

suddenly increased, but the read data rate is more uniform, you can use asynchronous FIFO to ensure

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

18

that the data will not be lost, the main design of the asynchronous FIFO in the following modules,as

shown in the Table 3[8].

Table 3: Examples of random depth implementations [6]

FIFO_buffer

First-in, first-out (FIFO) buffer that can be

accessed by both the write clock domain and

the read clock domain at the same time[8]

sync_read/write

Make that the write clock field and the read

pointer match[8].

sync_write/read
Ensure that the write pointer is same to the read

clock domain[8].

Read pointer_empty

The module has the FIFO read pointer and null

flag and is completely synchronized with the

read clock domain[8].

Write pointer_full

The FIFO write pointer and full flag are

included in this completely synchronized

module with the write clock domain[8].

The results show that after utilizing the asynchronous FIFO, there is enough buffer time after

writing data into the buffer. At the same time, the receiving area is also receiving at a stable rate and

the buffer make data transmit to each other one by one. The buffer meets the design requirements.

The optimal gain matrix of the control system is obtained by calculating the equation solution

through matlab code[8]. In Ncs, delay is unavoidable, however, the large delay of the signal in the

system can be avoided. The designer models the control system of the communication network, using

the pre-buffer to control the delay time. On this basis, Wenyu Wang find the answer of optimal

number of samples and the upper limit of each data bit .Then, with the intention of enhancing the

transmission accuracy and reduce BER, Wenyu Wang used a sampling frequency of 3 times the

frequency[8].

The findings suggest that the designed asynchronous circuit outstrips the conventional method in

terms of immunity to interference, the efficiency of transmission, and bit error rate[8],However, the

design of setting the data buffer through asynchronous FIFO increases the energy consumption of the

circuit as well as the resource consumption during hardware design, which is to be further optimized

subsequently.

2.5. Asynchronous FIFO buffer design for Noc

Targeting processor elements with NoC technology allows for on-chip communication by rerouting

data from the source. In order to reduce data loss in the case of multiple data streams, most NoC

architectures still have buffers configured at the input or output ports, albeit at a higher cost. [9].

Suruchi Chaturvedi designed two different asynchronous circular FIFO buffers, an asynchronous

design and a synchronous design, the synchronized design is illustrated in Figure 4:

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

19

Figure 4: Synchronous FIFO buffer architecture[9].

To latch the data, a completion detector (CD) is used. The CD is a static CMOS two-input NOR

gate. These CD outputs operate the write and read controllers [9]. Asynchronous FIFO buffer is

illustrated in Figure 5:

Figure 5: Asynchronous FIFO buffer architecture[9]

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

20

Simulations showed that the average power loss of the four-stage synchronous FIFO buffer is

28.57pW, while the asynchronous counterpart is only 14.93pW[9]. the latter's power consumption is

reduced by almost 50 percent[9].

Asynchronous buffer designs exhibit excellent write latency performance compared to

synchronous buffers. Asynchronous buffer designs perform very well in reducing write latency

compared to synchronous buffers. The improved latency using buffers reduces the read time and

greatly improves the read efficiency, thus allowing for improved average cycle time and throughput

[9]. In addition, in this design, the designer has reduced the number of transistors used which reduces

power consumption and reduces the area of the chip.

2.6. Handshake-based synchronization for multi-bit data transfer across clock domains

The handshake synchronization is based on two modules A and B. A and B are the sender and receiver

respectively, the two modules use different clocks, in the A clock, the request signal is elevated and

the signal is synchronized to the b clock after tapping and the signal is sampled in the b clock domain.

The received signal is elevated and synchronized to the clock domain and when the transmitter

module receives the acknowledgment signal, it sends the data to the receiver. The design reduces the

data transmission errors, as the next set of data can only be sent by the transmitter after the request

signal and the acknowledgment signal have occurred, which greatly reduces the possibility of errors

occurring during the data transmission process. The structure of the handshake synchronization

module is shown in Figure 6:

Figure 6: Handshake synchronization diagram

2.7. Asynchronous FIFO (clockless) design using handshake signals

In an attempt to enhance the performance of a design, designers are adding more and more processing

elements (PEs) that can communicate with each other on the system-on-chip (SOC). In a traditional

design, different processing elements have different clock sources, which may not satisfy the clock

build-up and hold times during cross-clock transfer and generate substabilities that lead to data loss.

S. Chaturvedi, S. M. N proposed a new architecture for the processing elements, where each of them

has an asynchronous FIFO. The circuit does not rely on the clock signals, but instead uses a request

(Request) and Acknowledge) signals for operation control. This design reduces the dependence on

the clock system, improves system reliability and immunity to interference, and is suitable for low-

power applications such as Internet of Things (IoT) communication solutions[10]. Figure 7 shows the

timings for asynchronous write operations and read operations.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

21

Figure 7: (a)Asynchronous write operation; (b) Asynchronous read operation[10]

Figure 8 shows the asynchronous signaling circuit:

Figure 8: Asynchronous signaling circuit[10]

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

22

The simulation results show that the read operation can appear to be executed on the bus after a

delay of 20 gates, which is about 0.02 seconds per gate. For the read request signal, it can appear on

the bus after 0.5 nanoseconds. For the write request signal, the edge relative to the write request signal

is written after a delay of 12 gates, which is about 0.25 nanoseconds [10]

3. Conclusion

Asynchronous FIFO, as a modern integrated circuit technology, shows full advantages in solving data

transfer between different clock domains, buffer design, etc. This paper provides a comprehensive

review of various asynchronous FIFO designs. Asynchronous FIFO is a useful design for finding the

solution to data transfer across clock domains. Nowadays, in terms of electronic system design ,

whether it is a buffer, memory controller, or data acquisition system, asynchronous FIFO can be used

to achieve a higher level of stability of the data transfer and achieve better system performance. The

future design can be centered around reducing design power consumption and utilizing

semiconductor processes to improve integration.

References

[1] Patel, V., Mer, V., Patoliya, J., & Soni, B. (2023). Design & implementation of novel asynchronous FIFO. In 2023

IEEE International Symposium on Smart Electronic Systems (iSES) (pp. 292-295).

[2] Xie, E., & Zhou, J. (2023). Analysis and comparison of asynchronous FIFO and synchronous FIFO. In 2023 IEEE

2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA) (pp. 260-264).

[3] Zhang, Y., Yi, C., Wang, J., & Zhang, J. (2011). Asynchronous FIFO implementation using FPGA. International
Conference on Electronics and Optoelectronics (pp. V3-207-V3-209). Himanshu, & Charan, C. (2024). A 16-byte

asynchronous gray code FIFO memory using Verilog HDL for real-time applications. In 2024 2nd International

Conference on Device Intelligence, Computing and Communication Technologies (DICCT).

[4] Li, H., Wang, Q., & Yu, S. (2021). Asynchronous FIFO design based on Verilog HDL. *Electronic Design

Engineering, 29(19), 107111+116.

[5] Zhang, B. (2015). Design and formal verification of SOC-based asynchronous FIFO. Xi'an Electronic Science and

Technology University.

[6] Hao, Z., Liu, L., & Tian, B. (2023). The principle and applications of asynchronous FIFO. In 2023 IEEE 2nd

International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA) (pp. 277-279).

[7] Wang, W. (2023). Optimization of UART communication protocol based on frequency multiplier sampling

technology and asynchronous FIFO. In 2023 IEEE 2nd International Conference on Electrical Engineering, Big

Data and Algorithms (EEBDA) (pp. 280-285).
[8] Chaturvedi, S., M, S. N., & Rao, R. (2022). Design of asynchronous circular FIFO buffer for asynchronous network

on chips. In 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics

(DISCOVER) (pp. 66-71).

[9] Abdel-Hafeez, S., & Quwaider, M. Q. (2020). A one-cycle asynchronous FIFO queue buffer circuit. International

Conference on Information and Communication Systems (ICICS) (pp. 388-393).

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19491

23

