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Abstract: This paper studies an adaptive event-triggered (AET) control method for sampled-

data systems to enhance communication efficiency and conserve resources. Initially, a 

dynamic event-triggering mechanism is introduced to minimize redundant data transmissions 

while maintaining system performance. Then, a state feedback control law is designed by 

optimizing the event-triggered threshold condition, with the system's stability verified using 

a Lyapunov function. The gain parameters are computed through a cone complementarity 

linearization algorithm, ensuring computational efficiency and robustness. Additionally, the 

proposed approach addresses the trade-off between communication resource utilization and 

control performance by dynamically adjusting the triggering conditions based on system 

states. This ensures a reduction in redundant transmissions without compromising system 

reliability. Finally, this method provides a systematic and effective framework for improving 

communication efficiency, with potential applications in industrial automation and resource-

constrained networked control systems. 

Keywords: Adaptive control, Model predictive control, Event-triggered transmission scheme. 

1. Introduction 

With the development of event-triggered control theory, it finds broad application across different 

communication scenarios, such as Multi-Agent Systems [1] and switched systems [2]. On the one 

hand, it effectively improves communication efficiency; but on the other hand, it has limitations. 

Traditional event control methods often struggle to utilize event transmission effectively when 

communication resources are limited, resulting in constrained savings in communication bandwidth. 

In practice, AET control methods based on model predictive control offer promising solutions to these 

issues [3]. However, when selecting trigger condition thresholds, it is important to consider how to 

increase the rate of change in the initial state while slowing it down as stability is approached. 

Therefore, we propose an AET control method based on a sampling error system.  

The control schemes presented in [4,5] are static and lack the capability to dynamically adjust 

triggering constraints. In contrast, the AET control method proposed in this paper has several 

advantages: it can adaptively adjust trigger constraints, dynamically respond to sampling errors, fully 

exploit the benefits of event triggering under limited communication resources, and maintain 

expected control performance while conserving more communication bandwidth. Compared to [6], 

the threshold constraint condition presented in this paper can reach and converge to a stable state 

faster, minimizing the volume of sampled data that must be transmitted. Furthermore, this paper’s 

primary contributions are as follows: 
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1) This study introduces a new AET control approach grounded in the sampling error system. 

Unlike the methods presented in [4][5], the proposed adaptive trigger control method effectively 

maintains the advantages of event- triggered under limited communication resources, allowing 

for greater savings in communication bandwidth. Furthermore, it guarantees expected control 

performance while reducing transmission data. 

2) The trigger conditions are further optimized compared to [6], enabling faster convergence to a 

stable state and minimizing the amount of data that needs to be transmitted. 

Within this work, R signifies the set of real numbers, Rn is space of real n-dimensional vector, Rm 

is space of real m-dimensional vector, L2 represents space of signals: L2 = {‖a(k)||2<∞},  N stands 

for the set of natural numbers, ‖a(k)||2 refers to a(k)∈Rn: √∑ ||a(k)||
2 ∞

k=0 .  

The organization of this paper is detailed below. Section II covers the system dynamics, 

assumptions, lemmas, and problem formulation. Section III outlines the main findings, encompassing 

the AET method, controller design, stability analysis, and solutions for gain parameters. Section IV 

provides the conclusion of the paper. 

2. Foundations and Problem Statement 

This section provides the system’s dynamic description, relevant assumptions and lemmas, as well 

as the problem formulation. 

2.1. System Dynamics 

Considering the sampled data error, the state space model expression of the system is given by 

 {
x(t) =Ax(t)+B(t)+B1ω(t),

y(t) =Cx(t),
 (1) 

where x(t)∈Rn and u(t)∈Rmare state control vectors and control input vectors, ω∈L2[0, ∞) is an 

external perturbation. The matrices A, B,  and B1 are all constant coefficients matrices, each having 

appropriate dimensions. The system’s initial state is given as x (0) = 0. 

In this article, the controller’s computational delay and the delay during the transmission from the 

controller to the actuator are neglected. 

Here, some necessary assumptions and lemma are given. 

Assumption 1 

The sensors are activated by time, with system states sampled at a fixed interval h>0, and all 

transmitted packets are provided with timestamps. 

Assumption 2 

Data transmission is determined by an event-triggered scheme. Upon the acquisition of the control 

data, it dispatches a timestamp synchronized with the measured value into the control loop. 

Assumption 3 

A zero-order holder (ZOH) generates the control input of the system. When the latest control input 

has not been received, ZOH is employed to maintain the current control input state. The holding 

time t∈Ω is defined as [tkh+η
1
, tk+1h+η

1
], where η

1
 is the stable transmission time-delay existing 

from the sensor to the controller. 

Lemma 1 [7]:  

Take into account the following system where 
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{

ẋ(t) =Ax (t)+A1x(t− τ(t))+B1ω(t),

z(t)=C0x(t)+C1x(t− τ(t)),

t∈[tk,tk+1), τ(t)=t-tk.

 

Here, x(t)∈Rn represents the state vector, ω(t)∈ Rnω represents the disturbance, and z(t)∈ Rnz 

is the controlled output. Matrices A,  A1, B1, C0 and  C1  have constant values with appropriate 

dimensions. Admit conditions that V̇̅(t)+zT(t)z(t)-γ2ωT(t)ω(t)<0, where V̅(t)=V(t,xt,ẋt). Almost for all 

t, ∀ ω ≠ 0 and a prescribed γ > 0, then the following results hold. For every nonzero ω∈L2[0, ∞) 

and under the zero initial condition, J = ∫ [β
2
xT(s)x(s)-γ2ωT(s)ω(s)]ds

∞

0
 < 0. 

2.2. Problem Formulation 

For given scalars γ > 0 and β > 0, set the performance index J to be: 

J = ∫ [β
2
xT(s)x(s)-γ2ωT(s)ω(s)]ds

∞

0
.        (2) 

We devise an event-triggered state feedback control law in the format of form: u(t)=Kx(tkh), t∈ Ω 

ensuring that the corresponding closed-loop system attains internal asymptotic stability. and J < 0 

for the initial condition x0= 0 and all nonzero ω∈L2[0, ∞). 

As can be seen from the expression in (8), a portion of sampled data stays untransmitted during 

the intervals between two transmission instances. With the aim of incorporating the event-triggered 

transmission scheme to determine the necessity of transmitting the current sampled data, an effective 

approach is presented. This approach considers the error of the sampled data at each sampling moment, 

resulting in the division of the ZOH holding interval Ω into subintervals. 

Ωn, k = [tkh+ nh +η
1
 ,tkh +nh+η

1
+h) i.e. Ω=∪Ωn, k, n = 0,1…tk+1-tk-1. 

Define 

 η(t) ≜ t - mn, kh, t∈ Ωn, k (3) 

 e(mn, kh) ≜ x(mn, kh)-x(tkh) (4) 

with mn, kh= tkh +nh, n=0,1,2…,tk+1-tk-1. 

In light of the meaning of  η(t), it turns out to be a piecewise linear function satisfying the following 

conditions. 

 η̇(t)=1, η
1
≤ h+ η(t) ≤ η

2
, t∈ Ωn ,k and t ≠ mn, k+η

1
. (5)  

Then the control law is represented as 

 u(t)=K[x(t-η(t))-e(t-η(t)], t∈ Ωn, k (6) 

From (1) and (6), the sampled-data error dependent system is of the following form. 

 ẋ=Ax(t)+ BKx(t-η(t))- BKe(mn, kh)+B1ω(t), t∈Ωn, k. (7) 

Remark 1: By the definition of η(t) and e(m
n, k

h), it can be noted that the calculation e(m
n,k

h) 

occurs solely at the sampling instant  tkh+ nh. Thereby, it’s not essential to conduct continuous 

measurement. 

Remark 2: Model (7) notably includes a specific case where η
1
= 0. From equation (5), it is evident 

that η
2

 is influenced by the sampling period as well as the transmission delay. When η
2

 is 

determined, it serves the purpose of balancing the sampling period with the permissible transmission 

delay. 
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The primary initiatives carried out in this paper are enumerated below. 

1) Propose an AET mechanism framework and conduct a stability analysis of the designed 

controller. 

2) Provide the LMI method for solving the controller gain parameters. 

3. Main Results 

3.1. Adaptive Event-Triggered Mechanism 

Assuming that data transmission depends on predefined conditions rather than occurring at fixed time 

intervals, this approach determines the timing of the next data transmission. In each control cycle, the 

sampled data is transmitted conditionally by an AET generator, while the control quantity is 

continuously adjusted by the model predictive controller. Compared to the schemes proposed in [4][5], 

the main advantage of the suggested AET predictive control scheme shown in Fig.1 is its ability to 

dynamically adjust the threshold. The increment is faster at the initial moment, allowing the system 

to converge more quickly as it approaches the steady state. Building on this description, the adaptive 

event generator determines the next transmission time as 

 tk+1h= tkh+min
n∈N

{eT(ikh)Φe(ikh)>σ(tkh)xT(tkh)Φx(tkh)} (8) 

where  Φ > 0  stands for the weight coefficient matrix, h denotes the system sampling period, 

tk(k = 0,1,2…) are some integers such that {t0,t1,t2…}⊂{0,1,2…};  e(ikh)  represents the current 

sampling moment data x(ikh) and the latest transmission data x(tkh), that is 

 e(ikh) ≜ x(ikh)-x(tkh), ikh∈(tkh,tk+1h]. (9) 

Moreover, σ(tkh) in (8) is governed by the following adaptive rule. 

𝜎(tk+1h) = max{ 1-α tanh [β(||x(tk+1h)||-||x(tkh)||)]⏟                    
λ

, σm}                (10) 

where tanh (∙) represents the hyperbolic tangent function, 0 < α and 0 < β are given constants to adjust 

the output of tanh (∙) , σmis the predefined lower bound of σ(tkh). In this research, we have  σ(0)=σm. 
The transmission events are influenced by the error e(ikh), the latest transmitted states x(tkh), and 

the adjustable threshold σ(tkh). 

 

Figure 1: Structural diagram of proposed AET-MPC 

Figure 2 provides an example illustrating the core concept of the proposed scheme, where tkh 

represents the triggered transmission instants. Clearly, not all data will be transmitted, but only the 

data that meets the constraint conditions will be transmitted. For instance, the data at time 0, h, 3h, 

6h and 9h are transmitted, while the data at the rest of times remain untransmitted. 
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Figure 2: Specific instance of the time evolution of the sampling and transmission sequences. 

Note that the function tanh (∙) has both an upper and lower bound, denoted as tanh (∙)∈ (-1,1). 

This paper leverages these properties to dynamically adjust the threshold σ(tkh). For example, when 
‖x(tk+1h)‖>‖x(tkh)‖, we can achieve  0<λ<1 and σ(tk+1h) < σ(tkh), which means using a 

smaller σ(tk+1h) to establish a faster communication frequency, thereby reducing the error between 
‖x(tk+1h)‖ and  ‖x(tkh)‖. Conversely, by setting a slower communication frequency σ(tk+1h), more 

communication bandwidth can be conserved. 

Remak 3: The event-triggered threshold σ is a pre-selected constant, and the parameters σ(tkh) 

can be dynamically adjusted according to the adaptive rules (10), depending on the current x(tk+1h), 

latest transmission data x(tkh), α, β and the simultaneous adjustment  σm . In addition, if  σm  is 

sufficiently close to zero, this implies that tk+1=tkh +h and all sampled data are transmitted with a 

constant sampling period h. In this case, the proposed adaptive communication scheme will 

degenerate into the general scheme [8][9]. More generally, if α ≡ 0, the scheme will degenerate into 

the constant communication scheme [10][11]. 

3.2. System Stability Analysis and Parameter Solving 

This subsection attaches importance to analyzing the system’s stability and providing ways to 

determine the parameters in event-triggered solution schemes. 

Consequently, focus on the ensuing Lyapunov function. 

 V(t,xt)=V1(t,xt)+V2(t,xt), t∈ Ωn ,k, (11) 

where xt=x (t+θ), ∀θ∈[-η
2
,0]. Then, one gets 

V1(t,xt) =  x
T(t)Px(t) + ∫ ∫ ẋ

T
(𝜊)S2ẋ(𝜊)d𝜊ds+ 

t

s

t-η
1

t-η
2

η
1
∫ ∫ ẋ

Tt

s

t

t-η
1

(𝜊)S1ẋ(ν)d𝜊ds+∑ ∫ xT(𝜊)Pix(𝜊)d𝜊
t

t-η
i

2
i=1 , 

where P>0, Pi>0, Si>0(i =1, 2) and 

V2(t,xt) = (η
2
-η(t))[𝜍T(t)R̂𝜍(t)+ ∫ ẋ

T
(𝜊)S3ẋ(𝜊)d𝜊

t

t-κ
]. 

with 

𝜍T(t) = [ xT(t), xT(t-κ)], κ = η(t)-η
1
. 

R̂ = [
R1 R2-R1

* R1-R2
T-R2

] , S3>0, R1>0 and R2 being chosen such that V(t,xt) ≥ 0.  

In what follows, the forms of V1and V2 will be utilized to determine whether the system is stable. 

Theorem 1: For given some constants γ >0, β >0, σ > 0, η1>0, h>0 and a matrix K under an event-

triggered transmission scheme (8), the system (7) from ω to x is finite-gain L2-stable with gain less 

than γ/β. If positive matrices P, R1, Φ, P1, P2, Si and appropriately sized matrices R2 and Li (i =1,2,3) 

exist, and the conditions to follow are met. 
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 [
P1 + hR1 *

hR2
T
-hR1 hR1-hR2

T
-hR2

]> 0.  (12)  

 [
Ε+ψ+ψT+(1-𝜌)hΣ *

F21
𝜌

-F22

]<0, 𝜌 = 0,1 (13) 

with 

Ε = diag{P1+P2-R1+β
2
I, -P1,0, -P2, -γ2I, R2

T+R2-R1}+2PI1I2+σI4ΦI4
T-S1I5I5

T+2I1(R1-R2)I3
T , 

     F21
 𝜌

= col{η
1
S1I2, hS2I2, hL𝜌+1

T hS3I2+𝜌hL3
T}, 

F22= diag{S1, hS2, hS2, hS3}, 

ψ   = [L3  L2  L1-L2  0  -L1  -L3  0], 

Σ   = 2I1R1I2+2I3(R2
T-R1

T)I2, 

where 

I1=[I  0  0  0  0  0  0]
T
, 

I2=[A 0 BK -BK 0 B1 0], 

I3=[0  0  0  0  0  0  I]
T
, 

I4=[0  0  I  -I  0  0  0]
T
, 

I5=[I  -I  0  0  0  0  0]
T
. 

Proof: When the time derivative of V(t,xt) in (11) is computed along the trajectory of system (7), 

it leads to 

V̇(t,xt) = 2xT(t)Pẋ(t)-∫ ẋ
T
(𝜊)S3ẋ(𝜊)d𝜊 - 

t

t-κ

𝜍T(t)R̂𝜍(t)+η
1
2ẋ

T
(t)S1ẋ(t)-η

1
∫ ẋ

T
(𝜊)S3ẋ(𝜊)d𝜊

t

t-κ

+hẋ
T
(t)S2ẋ(t) 

-∫ ẋ
T
(s)S2ẋ(s)ds

t-η
1

t-η
2

+ (η
2
-η(t)){2𝜍T(t)R̂[ẋ

T
(t), 0]

T
+ẋ

T
(t)S3ẋ(t)}+∑ [xT(t)Pix(t)-xT(t-η

i
)Pix(t-η

i
)]2

i =1 , 

           t∈Ωn,k.            (14) 

From (10), it is clear that the minimum value of σ (mn, kh) is σm. If the currently sampled data isn’t 

transmitted, the following relationship holds. 

eT(mn, kh)Φe(mn, kh)<σmxT(tkh)Φx(tkh)=σm(x(t-η(t))-e(mn,kh))
T
Φ(x(t-η(t))-e(mn,kh)), t∈Ωn, k   (15) 

By applying the Newton-Leibniz formula and introducing matrices Li ( i =1, 2, 3) of suitable 

dimensions to handle the integral terms in (14), the following result is derived from equations (14) 

and (15). 

 V̇(t,xt) <ξ
T
(t)Δ0ξ(t)-β

2
xT(t)+γ2ωT(t)ω(t).    (16)       

with 

ξ
T
(t)=[ xT(t),  xT(t-η

1
), xT(t-η(t)), eT(mn, kh), xT(t-η

1
),  ωT(t), xT(t-κ)], 

Δ0= Ε+(η
2
-η(t))Δ1+(η(t)-η

1
)Δ2+ψ+ψT+η

1
2I2

TS1I2+hI2
TS2I2, 

Δ1= L1S2
 -1

L1
T+I2

TS3I2+Σ, 

Δ2= L2S2
 -1

L2
T+I2

TS3I2+Σ, 

where Ε, ψ, I2 and Σ are defined in Theorem 1. □ 

Through the Lyapunov function in (11) and equations (13) to (16), it can be concluded that system 

(7) with ω(t)=0 is asymptotically stable under zero initial conditions. Furthermore, this result is 

supported by (12). Applying Lemma 1, the system is shown to be L2 finite gain stable with the gain 

constrained by γ / β. 

Theorem 2: Given some constants γ>0, β>0, σ >0, η1>0 and h>0 under the event-triggered 

transmission scheme (8), the system (7) remains finite-gain stable from ω to x with a gain less than 
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γ / β , and the state feedback controller gain is expressed as  K=YX -1 , if there exist positive 

matrices  X, R̃1, Φ ̃, P̃i, S̃i and a scalar  λ > 0, and suitable dimensioned matrices 

R̃2> 0  and L̃i > 0 ( i = 1, 2, 3),  in a way that the conditions outlined are fulfilled. 

 [
X+hR̃1 *

hR̃2

T
-hR̃1 hR̃1-hR̃2

T
-hR̃2

]> 0, (17) 

 [
Ẽ+ψ̃+ψ̃

T
*

F̃21

 𝜌
-F̃22

 𝜌 ]< 0, 𝜌= 0, 1, (18) 

where 

 Ẽ    =  diag{P̃1+P̃2-R̃1, 0, -Φ̃, P̃2 , -γ
2I, R̃2

T
+R̃2-R̃1}-S̃1I5I5

T+2I1Ĩ2+2I1(R̃1-R̃2)I3
T+σI4Φ̃I4

T , 

      F̃21

 0
 = col{η

1
Ĩ2, √hĨ2, √hL̃1

T
, √hĨ2, √2Ĩ2,hR̃1I1

T,h(R̃2-R̃1)I3
T, βX},  

F̃22

0
 =  diag{XS̃1

-1
X, XS̃2

-1
X, XS̃3

-1
X, Xλ

-1
X, λI, λI, I}, 

F̃21

1
 = col{η

1
Ĩ2, hĨ2, hL̃2

T
, hL̃3

T
}, 

F̃22

1
 = diag{XS̃1

-1
X, hXS̃2

-1
X, hS̃2, hS̃3}, 

ψ̃    =  [L̃3  L̃2  L̃1-L̃2  0  -L̃1 -L̃3  0], 

Ĩ2   = [AX  0  BY  -BY  0  B1  0 ]. 

Proof: Define X=P-1, XΦX=Φ̃, XPiX=P̃i, XR̃iX = R̃i(i = 1, 2), XSjX=S̃j, XLjX=L̃j ( j =1, 2, 3) and 

Y=KX. For any scalar λ > 0, it yields 

 Σ ≤  h
2
I1R1λR1I1

T+2I2λ
-1

I2+h
2
I3RTλ

-1
RI3

T (19) 

where  R = R2-R1 . Then multiply both sides of (12) with  diag(X, X ) . For 𝜌 = 0,  apply 

diag( X, X, X, X, X, X, I, X, I, I, X, I )  on both sides of (13)  and for 𝜌 = 1, use 

diag(X, X, X, X, X, X, I, X, I, I, X, X). 

Employing the Schur complement and equation (19), (17) and (18), thereby completing the proof.  

Nonlinear terms XS̃iX and Xλ
-1

X render the matrix inequality (18) non-convex, preventing direct 

resolution via the MATLAB LMI Toolbox. To this end, a variable matrix Mj
T> 0 ( j = 1, 2, 3,4) is 

introduced as 

 XS̃ i

 -1
X ≥ Mi,  Xλ

-1
X ≥ M4 (20) 

Let Nj=Mj
 −1, Z4+i=S̃i

 −1
( i=1, 2, 3), N8=λ

-1
I and N9 = X -1. Then (18) can be replaced by  

 [
Ni N9

* N4+i
]≥0, i =1, 2, 3, 4.  (21) 

Thus, it becomes possible to subsequently transform the original non-convex minimization 

problem into a minimization problem constrained by LMI conditions. 

 

{
  
 

  
 

min tr (∑ NjMj+∑ N4+iS̃i
3
i=1

4
j=1 +N8λI)

subject to:(17),G, (21)  and             

[
Mj I

* Zj
]≥ 0, [

X I

* N9
]≥ 0,                  

[
S̃i I

* N4+i

]≥ 0, [
λI I

* N8
]≥ 0,             

 (22) 
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where G is obtained from (18) by substituting  X S̃i X  and X λ
-1

X with Mj and   M4  in (22), 

respectively. The minimization problem discussed is solvable using CCL [12]. 

To derive a practical solution, the following algorithm is introduced to systematically identify the 

optimal parameters h, σ, Φ and K. 

Define: 

 {
min f (σ)

subject to: σ∈(0, 1)
 (23) 

where 

 f(σ) = 
the quantity of the trasmitted sampled-data

the quantity of all the sampled-data
 

To achieve a feasible solution, the following algorithm is proposed to obtain the optimal 

parameters h, σ, Φ and K. 

 

Algorithm 1 Determination of Parameters h, σ, Φ and K. 

1: Initialize k:=1, f 1:=1, set a smaller initial value σ and give ε as the step 

increment of σ; 

2: For given β and γ, solve (22) to judge whether a feasible solution exists. If a 

feasible solution exists, proceed to the step 3; otherwise, adjust the constant β and γ 

and restart from the step 2; 

3: Applying CCL solve (22) to obtain the parameters K, h and Ф. If f (σ )< f k, set k 

= k+1, update hk:= h, σk:=σ, Фk:=Ф, Kk:=k and f k:=f (σ). Else keep the current 

values of hk, σk, Фk, K k until f (σ )< f k; 

4: Update σ:=σ+ε, if σ∈(0,1), then output k, h, σ, Ф and exit. Otherwise, return to 

the step 3. 

Remark 4: In this analysis, it is assumed that all system states are fully observable and can be 

utilized for state feedback control. If the states of the system cannot all be measured, state estimation 

can be performed through a sampled control system. Similarly, if η
1
= 0 this can also be solved using 

a defined Lyapunov function (11). 

Remark 5: The AET scheme proposed in this paper builds upon the static event-triggered scheme, 

utilizing the threshold σ from the static event-triggered scheme as the initial value for the adaptive 

scheme. Consequently, the selection and determination of other parameters remain consistent with 

those in [13]. 

4. Conclusion 

The paper has proposed an AET control method based on a sampling error system. The AET 

mechanism is implemented to allow the system to dynamically modify the trigger threshold, reducing 

the transmitted sampling data and conserving bandwidth. Compared to traditional event-triggered 

mechanisms, the proposed approach has not only preserved the benefits of event-triggered control 

under constrained communication resources but also optimized bandwidth usage while maintaining 

the desired control performance. This approach has offered valuable insights for enhancing event-

triggered performance and improving communication transmission efficiency. 
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