

Reinforcement Learning-Based Scheduling Optimization for
DNN Accelerators

Feiyang Xu1,a,*

1School of Physics and Technology, Wuhan University, Hubei, China

a. 2020302191196@whu.edu

*corresponding author

Abstract: This paper presents a novel reinforcement learning (RL)-based framework for

optimizing dataflow scheduling in Deep Neural Network (DNN) accelerators. As DNNs grow

increasingly complex, efficient hardware accelerators such as TPUs and custom-designed

ASICs are essential to meet high performance and energy efficiency demands. However,

optimizing dataflow scheduling remains challenging due to the vast design space and

dynamic hardware constraints. The proposed framework uses Proximal Policy Optimization

(PPO) to dynamically adjust scheduling strategies. After the RL agent selects the rows to

optimize, a brute-force search is employed to find the optimal solutions for these rows,

ensuring that the scheduling satisfies both DNN parameters and hardware resource

constraints. We validated the framework on various DNN models, including YOLO v3,

Inception v4, MobileNet v3, and ResNet-50, across multiple accelerators like Eyeriss, TPU

v3, and Simba. The experimental results show substantial improvements, with RL-

Scheduling achieving up to a 65.6% reduction in execution cycles and a 59.7% improvement

in energy efficiency over existing scheduling algorithms. Additionally, the method

demonstrates superior algorithm execution efficiency compared to most existing approaches.

Keywords: Dataflow optimization, DNN accelerator, reinforcement learning, scheduling

optimization.

1. Introduction

With the rapid development of artificial intelligence, Deep Neural Networks (DNNs) have become

the cornerstone of various applications, including computer vision, natural language processing, and

autonomous driving. As the complexity of DNNs grows, their computational demands have surged,

making the design of efficient hardware accelerators essential to achieve high performance and low

energy consumption. DNN accelerators, such as Tensor Processing Units (TPUs) and custom-

designed Application-Specific Integrated Circuits (ASICs), aim to address these challenges by

accelerating DNN inference [1]. However, optimizing dataflow scheduling on these accelerators

remains a complex issue due to the vast design space and intricate interaction between layers and

hardware resources.

Traditional scheduling methods, such as heuristic-based algorithms and random search algorithms,

have been widely used for DNN dataflow optimization. However, these methods often struggle with

large design spaces and fail to fully adapt to the dynamic constraints of modern hardware architectures.

Recent studies have explored the potential of reinforcement learning (RL) to address these challenges,

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

177

enabling adaptive optimization strategies that learn from the environment to improve scheduling

efficiency. RL-based approaches, such as RLMap and RELMAS, have shown promising results in

optimizing DNN scheduling, outperforming conventional methods in both energy efficiency and

execution time [2, 3].

This paper proposes a novel reinforcement learning framework for optimizing dataflow scheduling

in DNN accelerators. This paper framework addresses the challenges of large-scale design spaces and

the dynamic nature of hardware configurations. In our work, we propose a reinforcement learning

framework for DNN accelerator scheduling optimization, using PPO to dynamically adjust

scheduling strategies. We implement a brute-force search method for finding locally optimal solutions,

ensuring that the solutions satisfy both DNN parameter constraints and hardware resource limits. We

validate our approach through extensive experiments across multiple DNN models and accelerator

architectures, demonstrating significant improvements in energy efficiency and execution cycles

compared to existing scheduling algorithms.

In the following sections, this paper will introduce some basic theory, and detail the methodology

used, the experimental setup, and the results of our comparison with state-of-the-art tools. The results

confirm the effectiveness of our approach in exploring large design spaces and optimizing scheduling

for different hardware configurations.

2. Basic Theory and Analysis

This section provides an overview of the essential elements involved in designing and optimizing

scheduling strategies for DNN accelerators. It covers the parameters of DNN layers, the hierarchical

structure of DNN accelerator components. Additionally, a review of existing scheduling optimization

methods highlights their limitations and the need for a dynamic, adaptive optimization approach using

reinforcement learning.

2.1. Representation of Deep Neural Networks (DNNs) and Accelerators

For designing and optimizing scheduling strategies for DNN accelerators, it is crucial to understand

the parameters of DNN layers and the roles and relationships of accelerator hardware components.

This section will discuss the fundamental structure of DNNs and their accelerators, to provide a

foundation for constructing the scheduling optimization model and facilitate efficient dataflow

scheduling.

DNNs are typically composed of multiple types of neural layers, such as convolutional layers,

fully connected layers, and pooling layers, each serving distinct purposes and characterized by unique

parameters [4]. However, a unified representation can be used to describe most neural layers, as

illustrated in Figure 1, where eight parameters are employed,including batch Size (B), Input Channel

(C), Group Size (G), Weight Width (R) and Weight Height (S), Output Channel (K), Output Width

(P) and Output Height (Q). The output dimension parameters P and Q, along with the dimensions of

the weight matrix, can be used to compute the size of the input feature map (U and V).

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

178

G

W

H

B

C

C

K

G

R

G

S

Q

P

G

K

B

Figure 1: A unified representation of a neural layer, illustrating the meaning of each parameter.

In the computation of neural layers, three primary data types are involved: Input, which refers to

the data fed into the neural layer; Weights, representing the connection weights that influence the

computations within the layer; and Output, which is the result generated from processing the input

data with the corresponding weights. These data types are crucial for defining the operations and

interactions within neural networks.

These data types exhibit different reuse characteristics when stored and processed by the

accelerator. Efficient scheduling requires careful orchestration of their movement across various

levels of memory to maximize data reuse and optimize performance.

The parameters of DNN layers are associated with each other due to their shared data types. As

shown in Table 1, each parameter (with the exception of G) is related to two types of data. For instance,

the C is related to both input data and weight data but not to output data. These interdependencies

reveal the potential for data reuse during neural network computations, which is key to optimizing

performance.

Table 1: Correlations between different parameters and their associated data types.

Parameters Correlations

C, R, S Input, Weight

B, P, Q Input, Output

K Weight, Output

G Input, Weight, Output

2.2. Components of Deep Neural Network Accelerators

The primary goal of DNN accelerators is to expedite the execution of DNN inference tasks. As such,

their hardware architecture typically needs to be optimized for different types of DNNs, leading to

various specialized accelerator architectures [5]. This section analyzes the unified hierarchical

modeling of DNN accelerator components and their role in dataflow scheduling.

As shown in Figure 2, the accelerator components can be represented in a unified hierarchical

structure. Registers are typically used to store intermediate computation results or provide fast access

to data, closely integrated with Multiply-Accumulate (MAC) Units. MAC units are the core of DNN

computation, responsible for performing matrix multiplications and additions. Local Buffers store

data transferred from global memory or higher-level caches, reducing the need to frequently access

global memory and thereby lowering energy consumption. Processing Elements (PEs) are the basic

units of parallel computation in DNN accelerators. Each PE usually contains multiple MAC units,

registers, and local buffers. The Global Buffer facilitates data transfer between different PEs and

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

179

provides cross-layer data sharing when needed. The size and bandwidth of the global buffer determine

the communication capacity between PEs. In large-scale accelerators, multiple Chips can work in

parallel, each containing numerous PEs, caches, and registers. Data exchange between chips is

handled by a high-speed communication network. Off-chip Memory (DRAM) is used to store the

parameters of the DNN model and intermediate computation results.

DNN accelerators utilize a multi-level memory hierarchy, ranging from registers and on-chip

caches to off-chip memory, forming a complex storage system [6]. Register-level data access is the

most efficient, but capacity is limited, while off-chip memory offers the largest capacity but incurs

the highest latency and energy consumption. Therefore, during scheduling optimization, data should

be reused efficiently, and frequent access to off-chip memory should be avoided whenever possible.

PE
PE

I W O

MAC

I W O

MAC

I OW

Local Buffer

...

PE

PE
PE

PE

PE
PE

PE

PE
PE

PE
...

...

......

PE
PE

PE

PE
PE

PE

...

PE
PE

PE

PE
PE

PE

...

I OW

Global Buffer

Chip Chip Chip Chip

DRAM

Temporal

Spatial

Figure 2: The hierarchical structure of DNN accelerator components and the types of data reuse.

In the multi-level hierarchy of DNN accelerators, components at different levels exhibit distinct

data reuse behaviors. As shown in Fig. 2, on-chip caches achieve temporal reuse by retaining data

blocks, while the spatial arrangement of MAC units, PEs, and chips enables spatial reuse of data. On-

chip caches store and reuse data, enabling different dataflow modes such as Input Stationary (IS),

Weight Stationary (WS), and Output Stationary (OS). These modes can coexist across various cache

levels. The spatial arrangement of processing elements allows the accelerator to process multiple data

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

180

blocks in parallel, thus improving computational throughput and parallelism [7]. By optimizing both

spatial and temporal reuse, in combination with efficient scheduling strategies, the computational

efficiency of each DNN layer can be significantly improved.

2.3. Systematic Literature Analysis

In recent years, researchers have proposed a variety of efficient solutions to address the scheduling

optimization problem in DNN accelerators. These methods aim to improve the performance and

energy efficiency of accelerators by optimizing dataflow scheduling and resource allocation. They

explore and generate optimal scheduling strategies through different technical approaches in the

complex design space.

Timeloop models various hardware architectures and simulates different dataflow scheduling

strategies using its energy and execution cycle models, helping researchers find the most optimal

solutions based on these metrics [8]. The evaluation model in our work is based on the framework

provided by Timeloop. However, the optimization strategy used in Timeloop is essentially the random

search, which makes it difficult to converge when addressing scheduling optimization problems.

CoSA employs a constrained optimization approach, constructing an objective function to generate

optimized scheduling schemes for DNN accelerators [9]. However, there is no guarantee that the

objective function constructed by CoSA is rational and capable of guiding the solution toward an

optimal result. Mind Mappings introduces a framework capable of efficiently searching the

algorithm-accelerator mapping space [10]. It uses a neural network to approximate the energy and

execution time of a scheduling solution. While this method can improve search efficiency, its

accuracy heavily depends on the coverage of the training dataset, and we found that it was largely

inaccurate in the experiments. ZigZag employs a top-down approach that performs a stepwise search

through the hierarchical structure of accelerators, starting from the computation units and moving

toward off-chip memory [11]. This method is inherently advantageous in generating scheduling

schemes with high PE utilization, but these schedules do not necessarily guarantee optimal energy

consumption or execution time. In contrast, NeuroSpector adopts a bottom-up approach, starting with

off-chip memory and focusing on optimizing off-chip memory accesses, which have the greatest

impact on energy consumption [12]. While it exhibits good scalability when handling large-scale

neural networks, it also suffers from the inability to guarantee optimal results for the specified

performance metrics.

A common limitation among current research is that most methods rely on heuristic approaches

and fail to account for the varying characteristics of the scheduling optimization problem under

different hardware configurations and inference tasks. A reasonable optimization method should

dynamically adjust the scheduling strategy based on the specific scheduling case. In this paper, we

propose a reinforcement learning-based optimization method that adjusts the optimization sequence

based on the current state of the scheduling optimization, enabling adaptive optimization.

3. Methodology and Model

This chapter details our approach to optimizing dataflow scheduling on DNN accelerators. First, we

define the fundamental framework of the problem, including the construction of the scheduling table

and the constraint relationships. Next, we introduce the design of the reinforcement learning

framework, covering the agent, environment, action space, state definition, reward function and the

optimization method based on Proximal Policy Optimization (PPO). We then discuss how the use of

invalid action masking. Finally, we demonstrate the brute-force search method for searching the

locally optimal solutions in iterative loop.

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

181

3.1. Problem Definition

In DNN accelerators, scheduling optimization refers to minimizing energy consumption and

execution time, all within the constraints of hardware and neural layer parameters. We represent the

mapping relationships between different levels of accelerator components and neural layer parameters

using a scheduling table. The scheduling table correlates the DNN layer parameters with the

corresponding components of the accelerator, illustrating how different data types (input, weights,

and output) are distributed and mapped within the accelerator hardware.

3.1.1. Scheduling Table Representation

In this work, we represent the scheduling optimization problem using a scheduling table. As shown

in Figure 3, each row of the table corresponds to a level of accelerator components, such as registers,

MAC units, local buffers, PEs, DRAM, etc. Each column corresponds to a parameter of the neural

network layer, such as C, K, R, S,etc. Each element in the table represents the mapping value of that

parameter within the corresponding hardware component. For components in the on-chip cache, the

mapping value indicates the quantity of data corresponding to that parameter dimension stored in the

component. For computational units with X and Y spatial dimensions, the mapping value represents

the distribution of that parameter’s data across the corresponding spatial direction of the component.

Correlations

Parameters

Register

MAC(X)

MAC(Y)

Local Buffer

PE(X)

PE(Y)

Global Buffer

Chip(X)

Chip(Y)

DRAM

KMAC:X

KReg

KMAC:Y

KLB

KPE:X

KPE:Y

KGB

KChip:X

KChip:Y

KDRAM

BMAC:X

BReg

BMAC:Y

BLB

BPE:X

BPE:Y

BGB

BChip:X

BChip:Y

BDRAM

PMAC:X

PReg

PMAC:Y

PLB

PPE:X

PPE:Y

PGB

PChip:X

PChip:Y

PDRAM

QMAC:X

QReg

QMAC:Y

QLB

QPE:X

QPE:Y

QGB

QChip:X

QChip:Y

QDRAM

CMAC:X

CReg

CMAC:Y

CLB

CPE:X

CPE:Y

CGB

CChip:X

CChip:Y

CDRAM

RMAC:X

RReg

RMAC:Y

RLB

RPE:X

RPE:Y

RGB

RChip:X

RChip:Y

RDRAM

SMAC:X

SReg

SMAC:Y

SLB

SPE:X

SPE:Y

SGB

SChip:X

SChip:Y

SDRAM

GMAC:X

GReg

GMAC:Y

GLB

GPE:X

GPE:Y

GGB

GChip:X

GChip:Y

GDRAM

K B P Q C R S G

W/O O/I I/W I/W/O

Figure 3: Scheduling Table Representation.

3.1.2. Scheduling Table Constraints

According to the definition of the scheduling table representation, the mapping values in the table

must satisfy both the DNN parameter constraints and the hardware resource constraints. For the

parameter constraints, the product of the values in each column of the scheduling table must equal

the corresponding DNN parameter value. This ensures that the mapping respects the computational

requirements of the neural network layers.

On the other hand, the hardware constraints require that the scheduling scheme take into account

the actual hardware resources of the accelerator, ensuring that the storage capacity and computational

capabilities of each component do not exceed their hardware limits [8]. For example, at the storage

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

182

level, the size of the input, weight, and output data tiles must not exceed the cache capacity at that

level, with data tile size calculated using the formulas provided in Table 2, 𝑖 from a buffer level

upwards to register. Similarly, for the spatial level, which pertains to the computational units, the

product of the values in the corresponding row represents the number of hardware components

involved in the computation at that level. This product must not exceed the total number of

components available. The scheduling table must be optimized under these hardware constraints to

maximize resource utilization and reduce conflicts.

Table 2: Formulas for calculating data tile sizes at each hardware level under resource constraints.

Data types Formulas

Input ∏ 𝐵𝑖 ∙ 𝐶𝑖 ∙ 𝑈𝑖 ∙ 𝑉𝑖

Weight ∏(𝐾𝑖/𝐺𝑖) ∙ 𝐶𝑖 ∙ 𝑅𝑖 ∙ 𝑆𝑖

Output ∏ 𝐵𝑖 ∙ 𝐾𝑖 ∙ 𝑃𝑖 ∙ 𝑄𝑖

3.2. Reinforcement Learning Framework

Previous research has proposed both top-down and bottom-up optimization methods, however, both

approaches are heuristic-based. A reasonable optimization method should not strictly adhere to either

top-down or bottom-up approaches but should dynamically select the optimal scheduling sequence

based on the scheduling context. Therefore, we transform the scheduling table’s mapping value

optimization problem into an MDP, enabling the agent to select the optimal scheduling sequence

based on the current scheduling state. The reinforcement learning agent iteratively optimizes the

scheduling table by exploring different search orders and performing local optimizations,

continuously improving its performance through iterative training.

PPO Policy

Agent

State:
Scheduling Table Info
Current optimized row
Energy Estimation
Cycles Estimation

Analyzer

Environment

Reward:
Energy Estimation
Cycles Estimation
Action effectiveness

Action:
Rows to be optimized

Scheduling
Table

Brute-force
Search

Accelerator
Configuration

Accelerator
Configuration

Action Masking
Mechanism

Figure 4: Reinforcement Learning Framework.

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

183

The reinforcement learning framework, illustrated in Figure 4, includes two main modules: the

agent and the environment. The agent is the core of the reinforcement learning system. Its task is to

obtain state information from the environment and select the optimal action based on the current

scheduling state, following the current policy. The agent’s policy is continuously updated through

interaction with the environment. In our implementation, we use Proximal Policy Optimization (PPO)

to optimize the agent’s policy.

The environment defines the hardware configuration of the DNN accelerator, the parameters of

the DNN layers, and the current mapping values and constraints in the scheduling table. During each

iteration, the environment updates the current scheduling optimization state based on the actions

selected by the agent and provides corresponding feedback. The feedback from the environment

includes evaluations of the current scheduling state’s energy consumption, execution cycles, and the

effectiveness of the action selected (e.g., whether there were redundant optimizations or multiple

large-scale optimizations that failed to achieve better results). This feedback is used by the agent to

update its policy, enabling better decisions in future scheduling actions.

The framework also defines the state space, action space, reward function, and the policy. The

state space in reinforcement learning is a vector that describes the current system condition. In

scheduling optimization, the state vector typically includes the current state of the scheduling table

(i.e., the current mapping values, the components involved in the optimization, and the parameters of

DNN layer), the available component for the next optimization step (represent as current optimized

row 𝑟), the energy consumption and execution cycles of the current scheduling table. We use 𝑠𝑡 to

represent the state at step 𝑡. The design of the state vector comprehensively reflects the current system

status, enabling the agent to make optimal decisions based on this information.

The action space defines all possible actions the agent can take. In our design, an action refers to

selecting which rows of the scheduling table to optimize. The agent can choose to optimize two or

three rows in a single step, which are represented as [𝑖, 𝑟] (𝑖 ≠ 𝑟 and 𝑖 ∈ [0, 9]) and [𝑖, 𝑗, 𝑟] (𝑖 ≠ 𝑗 ≠
𝑟 and 𝑖, 𝑗 ∈ [0, 9]) respectively. The actions are encoded as 𝑎𝑡 ∈ {𝑘 | 𝑘 ∈ [0, 54]} to represent the

action at step 𝑡. If 𝑎𝑡 < 10, the selected action is going to optimize two rows, otherwise, it is a multi-

rows action.

The reward function measures whether the agent’s actions contribute to achieving the optimization

goals. In our method, the reward function is defined based on energy consumption, execution cycles,

and the effectiveness of the action taken. The reward function is shown in equation (1), ∆𝑡 is the

difference between the optimized result and original result under the metric 𝑀, and 𝑛 is the number

of consecutive multi-rows actions. If a scheduling strategy significantly reduces computation time or

energy consumption, it will return a high reward. If the agent repeatedly chooses large-scale

optimizations without yielding better results, it will receive a penalty. By optimizing the reward

function, the agent can gradually learn the optimal scheduling strategy.

otherwise , 1

3 and 10 and 0 if , 31

10 and 0 if ,15

10 and 0 if ,10

nan

aM

aM

R
tt

ttinitt

ttinitt

t

 (1)

To effectively optimize the scheduling strategy within the reinforcement learning framework, we

employ the PPO method. PPO defines a trust region to prevent drastic policy updates. Specifically,

PPO uses a trust boundary to control the divergence between the new and old policies, ensuring that

each update does not deviate too far from the current optimal policy [13]. The actor loss is using a

clipped surrogate objective, which is shown in equation (2). The 𝜋𝜃 is the policy parameterized by 𝜃,

and 𝐴𝑡 is the advantage function computed using Generalized Advantage Estimation (GAE).

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

184

 t

tt

tt
t

tt

tt
t A

sa

sa
A

sa

sa

oldold

 1,1,
|

|
clip,

|

|
minLossActor

 (2)

The critic loss is shown in equation (3), which integrates the L2 norm penalty with the Smooth L1

loss (Huber loss) to prevent overfitting while ensuring stable training. The 𝑉𝜔(𝑠) is the predicted state

value at state 𝑠, and 𝑉𝜔(𝑠′) is the predicted state value at next state.

 21,SmoothL1Loss Critic LsVdonersV
 (3)

In our policy update method, we introduced entropy regularization (equation (4)) to the total loss,

which encourages exploration by preventing the policy from becoming overly deterministic, thereby

improving long-term performance. The total loss is shown in equation (5). The parameters 𝑐1 and 𝑐2

are the coefficients of value function and entropy, respectively, with 𝑐2 decaying over time to

gradually reduce exploration as training progresses. The decaying function is shown in equation (6),

its decay factor 𝜆𝑐2
is set to 0.995 . This approach ensures policy improvement while avoiding

instability caused by excessive updates.

 ttt sa |logEntropy
 (4)

EntropyLoss CriticLossActor Loss Total 21 cc (5)

otherwise ,

05modand 500 if , ,max

500 if ,

1

2

2

1

2

0

2

2 2

t

finalt

c

t

c

 t t cc

tc

c

 (6)

3.3. Action Masking

In the action space of reinforcement learning, certain actions may be invalid in specific states. For

example, under certain hardware accelerator resource configurations, some rows in the scheduling

table may correspond to hardware components that do not exist in the given accelerator, meaning that

their mapping values should not participate in scheduling optimization. To improve the efficiency of

the reinforcement learning algorithm, we introduce an action masking mechanism.

The basic principle of action masking is to filter out invalid actions in each state, thereby reducing

the effective action space for the agent and improving training efficiency. In the implementation,

action masking is performed by applying a binary mask to each action. When an action is invalid in

the current state, the mask value is set to 0, indicating that the action is masked; when the action is

valid, the mask value is set to 1, indicating that the agent can choose that action. Through this

mechanism, the agent can more efficiently explore valid scheduling strategies, thus accelerating the

learning process.

3.4. Brute-force Search for Locally Optimal Solutions

The reinforcement learning framework presented in this paper is designed to find an optimal

scheduling sequence in a diverse scheduling optimization problem space and use a search method to

identify the best scheduling strategy. This paper employs a brute-force search method, conducting an

exhaustive search for locally optimal solutions within the specific rows selected for optimization

during each action.

In scheduling optimization problem, the brute-force search first preprocesses the selected rows in

the scheduling table to ensure the optimization satisfies the parameter constraints of the DNN layer.

The detailed steps of the method are as follows:

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

185

 Preprocessing Step: First, the rows of the scheduling table selected by the action are preprocessed.

The purpose of preprocessing is to multiply the mapping values in each column of the selected

rows to obtain the parameter constraints corresponding to each parameter in those rows. For

example, as shown in Fig. 5, after preprocessing, the products of the columns in each row are 2, 1,

14, and 7, respectively.

 Factorization and Exhaustive Search of Combinations: Once the products of the columns are

obtained, this paper performs factorization to ensure that all possible scheduling combinations

meet the parameter constraints. For instance, if the parameter value for P is 14, as shown in Figure

5. It needs to factorize it into values that can be used as mapping values for the hardware resources

of the selected levels in the scheduling table. Through factorization, we can generate various

potential mapping value combinations that satisfy the DNN layer's parameter constraints, such as

{[1, 1, 14], [1, 14, 1], ..., [7, 2, 1]}. After completing factorization, we perform an exhaustive

search of all possible scheduling combinations. For each possible combination, we map it into the

scheduling table to form a complete scheduling plan.

Parameters

PE(X)

PE(Y)

DRAM

1

1

2

1

1

1

1

2

7

1

1

7

K B P Q

2 1 14 7

 Preprocessing Step

Products

2 1 14 7

 Factorization and Exhaustive Search of Combinations

Products

1

1

14

1

14

1

14

1

1

1

2

7

7

2

1

...

Factorization:

Then it performs an exhaustive search of all possible
scheduling combinations.

 Check the Hardware Constraints

 Performance Analysis and Optimal Solution Selection

Parameters

PE(X)

PE(Y)

DRAM

2

1

1

1

1

1

7

1

2

1

1

7

K B P Q

Example:

Figure 5: Example of Brute-force Search Method.

 Check the Hardware Constraints: During the exhaustive search process, some scheduling

combinations may exceed the hardware resource limits of the accelerator, such as surpassing the

capacity of local buffers or the number of processing elements. In these cases, the combinations

that do not meet the hardware constraints are discarded. The remaining scheduling combinations

are the valid ones that satisfy both hardware and parameter constraints.

 Performance Analysis and Optimal Solution Selection: For each valid scheduling combination,

this paper perform an analysis of energy consumption and execution time. Based on the current

optimization goal (e.g., minimizing energy consumption or execution time), we select the

scheduling combination with the best performance as the locally optimal solution, thereby

generating a more efficient scheduling table. As shown in Fig. 5, we select the optimal combination.

4. Experiment and Results Analysis

In this chapter, we validate the proposed reinforcement learning-based dataflow scheduling

optimization method for DNN accelerators through a series of experiments. We first introduce the

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

186

experimental setup, including the network structures and accelerator hardware configurations, as well

as the tuning of hyperparameters. Then, we present the results of the experiments, demonstrating the

effectiveness of the method in scheduling optimization, and compare it with other existing algorithms

in terms of energy consumption and execution cycles.

4.1. Experimental Setup

For the experiments, we set the actor learning rate to 3 × 10−4, the critic learning rate to 1 × 10−3,

the discount factor 𝛾 to 0.99, the clipping parameter 𝜀 to 0.2, the parameter of the L2 norm penalty

𝜆𝐿2 to 0.01, the coefficient of value function 𝑐1 to 0.5, the initial coefficient of entropy 𝑐2
0 to 0.1, and

the final coefficient of entropy 𝑐2
𝑓𝑖𝑛𝑎𝑙

 to 0.02. Training was conducted up to 3000 episodes.

4.1.1. Deep Neural Network Configuration

To validate our proposed scheduling optimization method, we selected several representative deep

neural network architectures for experiments, as shown in Table 3. These include YOLO v3,

Inception v4, MobileNet v3, and ResNet-50 [15-17]. These networks have varying parameter

configurations and computational requirements, providing a comprehensive evaluation of our

method's generalization ability across different network architectures.

Table 3: DNN Models.

Networks # Layers Data size Features

YOLO v3 75 221MB Large data, non-pow-2 filters

Inception v4 149 83MB Asymmetric weights

MobileNet v3 57 8.2MB Depth-wise, point-wise conv.

ResNet-50 50 38MB Bottleneck layers

4.1.2. Accelerator Configuration

In terms of hardware configuration, we evaluated our method on multiple typical DNN accelerator

architectures, as shown in Table 4, including Eyeriss, TPU, and Simba [18-21]. These accelerators

feature varying hardware resource configurations, allowing us to assess the effectiveness of our model

across different hardware setups.

Table 4: Accelerator Architecture Component Configurations.

Accelerators Eyeriss v1 Eyeriss v2 TPU v3 Simba

MAC per PE 1 2 1 64

Local buffer

(I/W/O)
14/448/48 bytes 24/288/80 bytes 8/32/3 kilobytes 4/8/2 kilobytes

PEs (X×Y) 14×12 4×3 256×128 4×4

Global buffer 108KB 12KB 32MB 64KB

Dataflow

(LB/GB)
WS/OS WS/OS WS/OS WS or OS/WS or OS

of chips 1 2×8 2×4 6×6

4.2. Accuracy Analysis of Scheduling Optimization

To further verify the superiority of our proposed method, we compared it with other existing

scheduling optimization algorithms. Specifically, we selected the commonly used DNN accelerator

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

187

scheduling methods, such as Timeloop, CoSA, ZigZag, and NeuroSpector, as baselines and

conducted experiments using the same network architectures and hardware configurations [8,9,11,12].

4.2.1. Energy Consumption Comparison

In the energy efficiency comparison experiments, we measured the energy consumption of each

algorithm across different network architectures and accelerator configurations. The Table 5

compares the energy consumption of NeuroSpector (N) and RL-Scheduling (RL). It shows that RL-

Scheduling consistently improves energy efficiency across most models with different accelerators.

For YOLO v3, RL-Scheduling reduces energy consumption by about 7.3% on Eyeriss and 1.8% on

TPU v3 compared to NeuroSpector. In MobileNet v3, it provides around 4.6% and 5.2% energy

reduction on Eyeriss and Simba, respectively, while showing similar performance to NeuroSpector

on TPU v3. For ResNet-50, RL-Scheduling achieves a 13.4% reduction on Eyeriss, with minimal

differences on other accelerators.

Table 5: Energy Consumption Comparison of NeuroSpector (N) and RL-Scheduling (RL) Methods

Across Different DNN Models and Accelerators.

 Eyeriss Simba TPU v3

 N RL N RL N RL

YOLO v3 1.39E+11 1.29E+11 8.99E+10 9.65E+10 3.64E+11 3.57E+11

Inception v4 3.21E+10 3.19E+10 2.26E+10 2.66E+10 1.05E+11 1.05E+11

MobileNet v3 8.54E+09 8.14E+09 8.77E+09 8.32E+09 6.34E+10 6.30E+10

ResNet-50 1.25E+10 1.09E+10 8.33E+09 9.14E+09 5.44E+10 5.41E+10

The experimental results on Eyeriss comparing with other methods is shown in Figure 7. The

methods include Timeloop (T), CoSA (C), ZigZag (Z), NeuroSpector (N), and RL-Scheduling (RL).

For YOLO v3, RL-Scheduling reduces energy consumption by approximately 59.7% compared to

Timeloop and by about 38.2% compared to CoSA. In Inception v4, RL-Scheduling shows a similar

trend, with about a 52.7% reduction in energy consumption compared to Timeloop and a 47.8%

reduction compared to CoSA. For MobileNet v3, where Timeloop and CoSA did not provide results,

RL-Scheduling achieves similar performance to NeuroSpector and ZigZag.

Figure 7: Energy Consumption Comparison of Scheduling Methods on Eyeriss for YOLO v3,

Inception v4, and MobileNet v3.

0

1

2

3

YOLO v3 Inception v4 MobileNet v3

T C Z N RL

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

188

4.2.2. Execution Cycle Comparison

In terms of execution cycles, our method also demonstrated significant advantages. The Table 6

compares the execution cycles after the scheduling optimization by NeuroSpector (N) and RL-

Scheduling (RL). For YOLO v3, RL-Scheduling reduces the number of cycles by about 26.7% on

Eyeriss and 1.3% on TPU v3 compared to NeuroSpector. In Inception v4, RL-Scheduling achieves a

4.1% cycle reduction on Eyeriss. In MobileNet v3, it provides around 10.1% cycle reduction on

Eyeriss, while showing similar performance to NeuroSpector on TPU v3. For ResNet-50, RL-

Scheduling achieves a 31.5% reduction on Eyeriss, with minimal differences on other accelerators.

Table 6: Execution Cycle Comparison of NeuroSpector (N) and RL-Scheduling (RL) Methods Across

Different DNN Models and Accelerators.

 Eyeriss Simba TPU v3

 N RL N RL N RL

YOLO v3 1.56E+09 1.14E+09 1.99E+08 2.19E+08 6.23E+07 6.15E+07

Inception v4 3.04E+08 2.92E+08 5.53E+07 6.40E+07 1.91E+07 1.91E+07

MobileNet v3 9.74E+07 8.76E+07 2.85E+07 2.88E+07 1.30E+07 1.29E+07

ResNet-50 1.62E+08 1.11E+08 2.45E+07 2.72E+07 1.07E+07 1.07E+07

The experimental results on TPU v3, as shown in Figure 8, demonstrate significant improvement

with RL-Scheduling. For YOLO v3, RL-Scheduling reduces execution cycles by approximately 65.6%

compared to Timeloop, while CoSA, and ZigZag failed to produce results. In Inception v4, RL-

Scheduling achieves a 61.5% reduction in cycles compared to Timeloop, while CoSA, and ZigZag

again unabled to provide results. For MobileNet v3, RL-Scheduling performs similarly to

NeuroSpector, while Timeloop, CoSA, and ZigZag failed to produce results.

Figure 8: Execution Cycle Comparison of Scheduling Methods on TPU v3 for YOLO v3, Inception

v4, and MobileNet v3.

4.3. Comparison of Algorithm Efficiency

In this experiment, we compared the runtime of different scheduling methods on Eyeriss for YOLO

v3, Inception v4, and MobileNet v3, as shown in Figure 9. The methods evaluated include Timeloop

(T), CoSA (C), ZigZag (Z), NeuroSpector (N), and RL-Scheduling (RL).

0

1

2

3

4

YOLO v3 Inception v4 MobileNet v3

T C Z N RL

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

189

Figure 9: Runtime Comparison of Scheduling Methods on Eyeriss for YOLO v3, Inception v4, and

MobileNet v3.

In YOLO v3, RL-Scheduling reduces runtime by over 99% compared to Timeloop (T) and ZigZag

(Z), while performing similarly to CoSA (C) but slightly worse than NeuroSpector (N). In Inception

v4, RL-Scheduling achieves a runtime reduction of over 99% compared to T, C, and Z, and a 51.5%

reduction compared to N. In MobileNet v3, RL-Scheduling reduces runtime by nearly 99% compared

to Z and performs on par with N, while T and C failed to provide results.

4.4. Experimental Summary

The results of the above experiments validate the effectiveness and superiority of the reinforcement

learning-based scheduling optimization method for DNN accelerators. The experimental results show

that the proposed method not only reduces energy consumption and improves overall computational

efficiency, but also enables targeted optimization for different types of DNN layers. Additionally,

compared to existing scheduling algorithms, the reinforcement learning method is better able to

explore the optimal solutions in large design spaces, demonstrating stronger generalization and

stability.

5. Conclusion

In this paper, we presented a reinforcement learning-based framework for optimizing dataflow

scheduling in DNN accelerators. By employing Proximal Policy Optimization (PPO) alongside a

brute-force search for locally optimal solutions, our approach adapts dynamically to hardware

resource constraints and DNN workload requirements. The experimental results showed significant

improvements in both energy consumption and execution cycles compared to traditional scheduling

methods. The framework demonstrates scalability across different DNN models and hardware

configurations, offering a robust solution for accelerating deep learning tasks with optimized

performance.

As the complexity of DNN models continues to grow, the design of accelerator architectures has

become increasingly intricate, placing greater demands on the generalization capability of scheduling

models. Although the PPO-based reinforcement learning framework has demonstrated effectiveness

in scheduling optimization, its efficiency decreases in large state spaces, leading to slower

convergence and reduced search effectiveness, which limits its application in complex DNN tasks.

Future research should focus on refining the definition of the state space by incorporating encoder

techniques to enhance search efficiency, and on improving the generalization capabilities of the

model, ensuring consistent performance across diverse DNN architectures and hardware accelerators.

These advancements will help make reinforcement learning-based scheduling methods more scalable

and adaptable.

0.1

1

10

100

1000

10000

YOLO v3 Inception v4 MobileNet v3

T C Z N RL

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

190

References

[1] Jouppi N P, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. Proceedings

of the 44th annual international symposium on computer architecture. 2017: 1-12.

[2] Liu D, Yin S, Luo G, et al. Data-flow graph mapping optimization for CGRA with deep reinforcement learning.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38(12): 2271-2283.

[3] Blanco F G, Russo E, Palesi M, et al. Deep Reinforcement Learning based Online Scheduling Policy for Deep

Neural Network Multi-Tenant Multi-Accelerator Systems. arXiv preprint arXiv:2404.08950, 2024.

[4] AMohaidat T, Khalil K. A survey on neural network hardware accelerators. IEEE Transactions on Artificial

Intelligence, 2024.

[5] Latotzke C, Gemmeke T. Efficiency versus accuracy: a review of design techniques for DNN hardware accelerators.

IEEE Access, 2021, 9: 9785-9799.

[6] Bause O, Bernardo P P, Bringmann O. A Configurable and Efficient Memory Hierarchy for Neural Network

Hardware Accelerator. arXiv preprint arXiv:2404.15823, 2024.
[7] Wang C, Wang Z, Li S, et al. EWS: An Energy-Efficient CNN Accelerator With Enhanced Weight Stationary

Dataflow. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024.

[8] Parashar A, Raina P, Shao Y S, et al. Timeloop: A systematic approach to dnn accelerator evaluation. 2019 IEEE

international symposium on performance analysis of systems and software (ISPASS). IEEE, 2019: 304-315.

[9] Huang Q, Kang M, Dinh G, et al. Cosa: Scheduling by constrained optimization for spatial accelerators. 2021

ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021: 554-566.

[10] Hegde K, Tsai P A, Huang S, et al. Mind mappings: enabling efficient algorithm-accelerator mapping space search.

Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems. 2021: 943-958.

[11] Mei L, Houshmand P, Jain V, et al. ZigZag: Enlarging joint architecture-mapping design space exploration for

DNN accelerators. IEEE Transactions on Computers, 2021, 70(8): 1160-1174.
[12] Park C, Kim B, Ryu S, et al. NeuroSpector: Systematic Optimization of Dataflow Scheduling in DNN Accelerators.

IEEE Transactions on Parallel and Distributed Systems, 2023, 34(8): 2279-2294.

[13] Ma D. Reinforcement learning and autonomous driving: Comparison between DQN and PPO. AIP Conference

Proceedings. AIP Publishing, 2024, 3144(1).

[14] Adarsh P, Rathi P, Kumar M. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model.

2020 6th international conference on advanced computing and communication systems (ICACCS). IEEE, 2020:

687-694.

[15] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on

learning. Proceedings of the AAAI conference on artificial intelligence. 2017, 31(1).

[16] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3. Proceedings of the IEEE/CVF international

conference on computer vision. 2019: 1314-1324.

[17] Koonce B, Koonce B. ResNet 50. Convolutional neural networks with swift for tensorflow: image recognition and
dataset categorization, 2021: 63-72.

[18] Chen Y H, Krishna T, Emer J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional

neural networks. IEEE journal of solid-state circuits, 2016, 52(1): 127-138.

[19] Chen Y H, Yang T J, Emer J, et al. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile

devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 292-308.

[20] Norrie T, Patil N, Yoon D H, et al. The design process for Google's training chips: TPUv2 and TPUv3. IEEE Micro,

2021, 41(2): 56-63.

[21] Shao Y S, Clemons J, Venkatesan R, et al. Simba: Scaling deep-learning inference with multi-chip-module-based

architecture. Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 2019:

14-27.

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/123/2025.19588

191

