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Abstract: This paper presents a novel reinforcement learning (RL)-based framework for 

optimizing dataflow scheduling in Deep Neural Network (DNN) accelerators. As DNNs grow 

increasingly complex, efficient hardware accelerators such as TPUs and custom-designed 

ASICs are essential to meet high performance and energy efficiency demands. However, 

optimizing dataflow scheduling remains challenging due to the vast design space and 

dynamic hardware constraints. The proposed framework uses Proximal Policy Optimization 

(PPO) to dynamically adjust scheduling strategies. After the RL agent selects the rows to 

optimize, a brute-force search is employed to find the optimal solutions for these rows, 

ensuring that the scheduling satisfies both DNN parameters and hardware resource 

constraints. We validated the framework on various DNN models, including YOLO v3, 

Inception v4, MobileNet v3, and ResNet-50, across multiple accelerators like Eyeriss, TPU 

v3, and Simba. The experimental results show substantial improvements, with RL-

Scheduling achieving up to a 65.6% reduction in execution cycles and a 59.7% improvement 

in energy efficiency over existing scheduling algorithms. Additionally, the method 

demonstrates superior algorithm execution efficiency compared to most existing approaches. 

Keywords: Dataflow optimization, DNN accelerator, reinforcement learning, scheduling 

optimization. 

1. Introduction 

With the rapid development of artificial intelligence, Deep Neural Networks (DNNs) have become 

the cornerstone of various applications, including computer vision, natural language processing, and 

autonomous driving. As the complexity of DNNs grows, their computational demands have surged, 

making the design of efficient hardware accelerators essential to achieve high performance and low 

energy consumption. DNN accelerators, such as Tensor Processing Units (TPUs) and custom-

designed Application-Specific Integrated Circuits (ASICs), aim to address these challenges by 

accelerating DNN inference [1]. However, optimizing dataflow scheduling on these accelerators 

remains a complex issue due to the vast design space and intricate interaction between layers and 

hardware resources. 

Traditional scheduling methods, such as heuristic-based algorithms and random search algorithms, 

have been widely used for DNN dataflow optimization. However, these methods often struggle with 

large design spaces and fail to fully adapt to the dynamic constraints of modern hardware architectures. 

Recent studies have explored the potential of reinforcement learning (RL) to address these challenges, 
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enabling adaptive optimization strategies that learn from the environment to improve scheduling 

efficiency. RL-based approaches, such as RLMap and RELMAS, have shown promising results in 

optimizing DNN scheduling, outperforming conventional methods in both energy efficiency and 

execution time [2, 3]. 

This paper proposes a novel reinforcement learning framework for optimizing dataflow scheduling 

in DNN accelerators. This paper framework addresses the challenges of large-scale design spaces and 

the dynamic nature of hardware configurations. In our work, we propose a reinforcement learning 

framework for DNN accelerator scheduling optimization, using PPO to dynamically adjust 

scheduling strategies. We implement a brute-force search method for finding locally optimal solutions, 

ensuring that the solutions satisfy both DNN parameter constraints and hardware resource limits. We 

validate our approach through extensive experiments across multiple DNN models and accelerator 

architectures, demonstrating significant improvements in energy efficiency and execution cycles 

compared to existing scheduling algorithms. 

In the following sections, this paper will introduce some basic theory, and detail the methodology 

used, the experimental setup, and the results of our comparison with state-of-the-art tools. The results 

confirm the effectiveness of our approach in exploring large design spaces and optimizing scheduling 

for different hardware configurations. 

2. Basic Theory and Analysis 

This section provides an overview of the essential elements involved in designing and optimizing 

scheduling strategies for DNN accelerators. It covers the parameters of DNN layers, the hierarchical 

structure of DNN accelerator components. Additionally, a review of existing scheduling optimization 

methods highlights their limitations and the need for a dynamic, adaptive optimization approach using 

reinforcement learning. 

2.1. Representation of Deep Neural Networks (DNNs) and Accelerators 

For designing and optimizing scheduling strategies for DNN accelerators, it is crucial to understand 

the parameters of DNN layers and the roles and relationships of accelerator hardware components. 

This section will discuss the fundamental structure of DNNs and their accelerators, to provide a 

foundation for constructing the scheduling optimization model and facilitate efficient dataflow 

scheduling. 

DNNs are typically composed of multiple types of neural layers, such as convolutional layers, 

fully connected layers, and pooling layers, each serving distinct purposes and characterized by unique 

parameters [4]. However, a unified representation can be used to describe most neural layers, as 

illustrated in Figure 1, where eight parameters are employed,including batch Size (B), Input Channel 

(C), Group Size (G), Weight Width (R) and Weight Height (S), Output Channel (K), Output Width 

(P) and Output Height (Q). The output dimension parameters P and Q, along with the dimensions of 

the weight matrix, can be used to compute the size of the input feature map (U and V). 
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Figure 1: A unified representation of a neural layer, illustrating the meaning of each parameter.  

In the computation of neural layers, three primary data types are involved: Input, which refers to 

the data fed into the neural layer; Weights, representing the connection weights that influence the 

computations within the layer; and Output, which is the result generated from processing the input 

data with the corresponding weights. These data types are crucial for defining the operations and 

interactions within neural networks. 

These data types exhibit different reuse characteristics when stored and processed by the 

accelerator. Efficient scheduling requires careful orchestration of their movement across various 

levels of memory to maximize data reuse and optimize performance. 

The parameters of DNN layers are associated with each other due to their shared data types. As 

shown in Table 1, each parameter (with the exception of G) is related to two types of data. For instance, 

the C is related to both input data and weight data but not to output data. These interdependencies 

reveal the potential for data reuse during neural network computations, which is key to optimizing 

performance. 

Table 1: Correlations between different parameters and their associated data types. 

Parameters Correlations 

C, R, S Input, Weight 

B, P, Q Input, Output 

K Weight, Output 

G Input, Weight, Output 

2.2. Components of Deep Neural Network Accelerators 

The primary goal of DNN accelerators is to expedite the execution of DNN inference tasks. As such, 

their hardware architecture typically needs to be optimized for different types of DNNs, leading to 

various specialized accelerator architectures [5]. This section analyzes the unified hierarchical 

modeling of DNN accelerator components and their role in dataflow scheduling.  

As shown in Figure 2, the accelerator components can be represented in a unified hierarchical 

structure. Registers are typically used to store intermediate computation results or provide fast access 

to data, closely integrated with Multiply-Accumulate (MAC) Units. MAC units are the core of DNN 

computation, responsible for performing matrix multiplications and additions. Local Buffers store 

data transferred from global memory or higher-level caches, reducing the need to frequently access 

global memory and thereby lowering energy consumption. Processing Elements (PEs) are the basic 

units of parallel computation in DNN accelerators. Each PE usually contains multiple MAC units, 

registers, and local buffers. The Global Buffer facilitates data transfer between different PEs and 
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provides cross-layer data sharing when needed. The size and bandwidth of the global buffer determine 

the communication capacity between PEs. In large-scale accelerators, multiple Chips can work in 

parallel, each containing numerous PEs, caches, and registers. Data exchange between chips is 

handled by a high-speed communication network. Off-chip Memory (DRAM) is used to store the 

parameters of the DNN model and intermediate computation results. 

DNN accelerators utilize a multi-level memory hierarchy, ranging from registers and on-chip 

caches to off-chip memory, forming a complex storage system [6]. Register-level data access is the 

most efficient, but capacity is limited, while off-chip memory offers the largest capacity but incurs 

the highest latency and energy consumption. Therefore, during scheduling optimization, data should 

be reused efficiently, and frequent access to off-chip memory should be avoided whenever possible. 
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Figure 2: The hierarchical structure of DNN accelerator components and the types of data reuse. 

In the multi-level hierarchy of DNN accelerators, components at different levels exhibit distinct 

data reuse behaviors. As shown in Fig. 2, on-chip caches achieve temporal reuse by retaining data 

blocks, while the spatial arrangement of MAC units, PEs, and chips enables spatial reuse of data. On-

chip caches store and reuse data, enabling different dataflow modes such as Input Stationary (IS), 

Weight Stationary (WS), and Output Stationary (OS). These modes can coexist across various cache 

levels. The spatial arrangement of processing elements allows the accelerator to process multiple data 
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blocks in parallel, thus improving computational throughput and parallelism [7]. By optimizing both 

spatial and temporal reuse, in combination with efficient scheduling strategies, the computational 

efficiency of each DNN layer can be significantly improved. 

2.3. Systematic Literature Analysis 

In recent years, researchers have proposed a variety of efficient solutions to address the scheduling 

optimization problem in DNN accelerators. These methods aim to improve the performance and 

energy efficiency of accelerators by optimizing dataflow scheduling and resource allocation. They 

explore and generate optimal scheduling strategies through different technical approaches in the 

complex design space. 

Timeloop models various hardware architectures and simulates different dataflow scheduling 

strategies using its energy and execution cycle models, helping researchers find the most optimal 

solutions based on these metrics [8]. The evaluation model in our work is based on the framework 

provided by Timeloop. However, the optimization strategy used in Timeloop is essentially the random 

search, which makes it difficult to converge when addressing scheduling optimization problems. 

CoSA employs a constrained optimization approach, constructing an objective function to generate 

optimized scheduling schemes for DNN accelerators [9]. However, there is no guarantee that the 

objective function constructed by CoSA is rational and capable of guiding the solution toward an 

optimal result. Mind Mappings introduces a framework capable of efficiently searching the 

algorithm-accelerator mapping space [10]. It uses a neural network to approximate the energy and 

execution time of a scheduling solution. While this method can improve search efficiency, its 

accuracy heavily depends on the coverage of the training dataset, and we found that it was largely 

inaccurate in the experiments. ZigZag employs a top-down approach that performs a stepwise search 

through the hierarchical structure of accelerators, starting from the computation units and moving 

toward off-chip memory [11]. This method is inherently advantageous in generating scheduling 

schemes with high PE utilization, but these schedules do not necessarily guarantee optimal energy 

consumption or execution time. In contrast, NeuroSpector adopts a bottom-up approach, starting with 

off-chip memory and focusing on optimizing off-chip memory accesses, which have the greatest 

impact on energy consumption [12]. While it exhibits good scalability when handling large-scale 

neural networks, it also suffers from the inability to guarantee optimal results for the specified 

performance metrics. 

A common limitation among current research is that most methods rely on heuristic approaches 

and fail to account for the varying characteristics of the scheduling optimization problem under 

different hardware configurations and inference tasks. A reasonable optimization method should 

dynamically adjust the scheduling strategy based on the specific scheduling case. In this paper, we 

propose a reinforcement learning-based optimization method that adjusts the optimization sequence 

based on the current state of the scheduling optimization, enabling adaptive optimization. 

3. Methodology and Model 

This chapter details our approach to optimizing dataflow scheduling on DNN accelerators. First, we 

define the fundamental framework of the problem, including the construction of the scheduling table 

and the constraint relationships. Next, we introduce the design of the reinforcement learning 

framework, covering the agent, environment, action space, state definition, reward function and the 

optimization method based on Proximal Policy Optimization (PPO). We then discuss how the use of 

invalid action masking. Finally, we demonstrate the brute-force search method for searching the 

locally optimal solutions in iterative loop. 
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3.1. Problem Definition 

In DNN accelerators, scheduling optimization refers to minimizing energy consumption and 

execution time, all within the constraints of hardware and neural layer parameters. We represent the 

mapping relationships between different levels of accelerator components and neural layer parameters 

using a scheduling table. The scheduling table correlates the DNN layer parameters with the 

corresponding components of the accelerator, illustrating how different data types (input, weights, 

and output) are distributed and mapped within the accelerator hardware. 

3.1.1. Scheduling Table Representation 

In this work, we represent the scheduling optimization problem using a scheduling table. As shown 

in Figure 3, each row of the table corresponds to a level of accelerator components, such as registers, 

MAC units, local buffers, PEs, DRAM, etc. Each column corresponds to a parameter of the neural 

network layer, such as C, K, R, S,etc. Each element in the table represents the mapping value of that 

parameter within the corresponding hardware component. For components in the on-chip cache, the 

mapping value indicates the quantity of data corresponding to that parameter dimension stored in the 

component. For computational units with X and Y spatial dimensions, the mapping value represents 

the distribution of that parameter’s data across the corresponding spatial direction of the component. 
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Figure 3: Scheduling Table Representation. 

3.1.2. Scheduling Table Constraints 

According to the definition of the scheduling table representation, the mapping values in the table 

must satisfy both the DNN parameter constraints and the hardware resource constraints. For the 

parameter constraints, the product of the values in each column of the scheduling table must equal 

the corresponding DNN parameter value. This ensures that the mapping respects the computational 

requirements of the neural network layers. 

On the other hand, the hardware constraints require that the scheduling scheme take into account 

the actual hardware resources of the accelerator, ensuring that the storage capacity and computational 

capabilities of each component do not exceed their hardware limits [8]. For example, at the storage 
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level, the size of the input, weight, and output data tiles must not exceed the cache capacity at that 

level, with data tile size calculated using the formulas provided in Table 2, 𝑖 from a buffer level 

upwards to register. Similarly, for the spatial level, which pertains to the computational units, the 

product of the values in the corresponding row represents the number of hardware components 

involved in the computation at that level. This product must not exceed the total number of 

components available. The scheduling table must be optimized under these hardware constraints to 

maximize resource utilization and reduce conflicts. 

Table 2: Formulas for calculating data tile sizes at each hardware level under resource constraints. 

Data types Formulas 

Input ∏ 𝐵𝑖 ∙ 𝐶𝑖 ∙ 𝑈𝑖 ∙ 𝑉𝑖  

Weight ∏(𝐾𝑖/𝐺𝑖) ∙ 𝐶𝑖 ∙ 𝑅𝑖 ∙ 𝑆𝑖 

Output ∏ 𝐵𝑖 ∙ 𝐾𝑖 ∙ 𝑃𝑖 ∙ 𝑄𝑖 

3.2. Reinforcement Learning Framework 

Previous research has proposed both top-down and bottom-up optimization methods, however, both 

approaches are heuristic-based. A reasonable optimization method should not strictly adhere to either 

top-down or bottom-up approaches but should dynamically select the optimal scheduling sequence 

based on the scheduling context. Therefore, we transform the scheduling table’s mapping value 

optimization problem into an MDP, enabling the agent to select the optimal scheduling sequence 

based on the current scheduling state. The reinforcement learning agent iteratively optimizes the 

scheduling table by exploring different search orders and performing local optimizations, 

continuously improving its performance through iterative training. 
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Figure 4: Reinforcement Learning Framework. 
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The reinforcement learning framework, illustrated in Figure 4, includes two main modules: the 

agent and the environment. The agent is the core of the reinforcement learning system. Its task is to 

obtain state information from the environment and select the optimal action based on the current 

scheduling state, following the current policy. The agent’s policy is continuously updated through 

interaction with the environment. In our implementation, we use Proximal Policy Optimization (PPO) 

to optimize the agent’s policy. 

The environment defines the hardware configuration of the DNN accelerator, the parameters of 

the DNN layers, and the current mapping values and constraints in the scheduling table. During each 

iteration, the environment updates the current scheduling optimization state based on the actions 

selected by the agent and provides corresponding feedback. The feedback from the environment 

includes evaluations of the current scheduling state’s energy consumption, execution cycles, and the 

effectiveness of the action selected (e.g., whether there were redundant optimizations or multiple 

large-scale optimizations that failed to achieve better results). This feedback is used by the agent to 

update its policy, enabling better decisions in future scheduling actions. 

The framework also defines the state space, action space, reward function, and the policy. The 

state space in reinforcement learning is a vector that describes the current system condition. In 

scheduling optimization, the state vector typically includes the current state of the scheduling table 

(i.e., the current mapping values, the components involved in the optimization, and the parameters of 

DNN layer), the available component for the next optimization step (represent as current optimized 

row 𝑟), the energy consumption and execution cycles of the current scheduling table. We use 𝑠𝑡 to 

represent the state at step 𝑡. The design of the state vector comprehensively reflects the current system 

status, enabling the agent to make optimal decisions based on this information. 

The action space defines all possible actions the agent can take. In our design, an action refers to 

selecting which rows of the scheduling table to optimize. The agent can choose to optimize two or 

three rows in a single step, which are represented as [𝑖, 𝑟] ( 𝑖 ≠ 𝑟 and 𝑖 ∈ [0, 9]) and [𝑖, 𝑗, 𝑟] ( 𝑖 ≠ 𝑗 ≠
𝑟 and 𝑖, 𝑗 ∈ [0, 9]) respectively. The actions are encoded as 𝑎𝑡 ∈ {𝑘 | 𝑘 ∈ [0, 54]} to represent the 

action at step 𝑡. If 𝑎𝑡 < 10, the selected action is going to optimize two rows, otherwise, it is a multi-

rows action. 

The reward function measures whether the agent’s actions contribute to achieving the optimization 

goals. In our method, the reward function is defined based on energy consumption, execution cycles, 

and the effectiveness of the action taken. The reward function is shown in equation (1), ∆𝑡 is the 

difference between the optimized result and original result under the metric 𝑀, and 𝑛 is the number 

of consecutive multi-rows actions. If a scheduling strategy significantly reduces computation time or 

energy consumption, it will return a high reward. If the agent repeatedly chooses large-scale 

optimizations without yielding better results, it will receive a penalty. By optimizing the reward 

function, the agent can gradually learn the optimal scheduling strategy. 
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To effectively optimize the scheduling strategy within the reinforcement learning framework, we 

employ the PPO method. PPO defines a trust region to prevent drastic policy updates. Specifically, 

PPO uses a trust boundary to control the divergence between the new and old policies, ensuring that 

each update does not deviate too far from the current optimal policy [13]. The actor loss is using a 

clipped surrogate objective, which is shown in equation (2). The 𝜋𝜃 is the policy parameterized by 𝜃, 

and 𝐴𝑡 is the advantage function computed using Generalized Advantage Estimation (GAE). 
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           (2) 

The critic loss is shown in equation (3), which integrates the L2 norm penalty with the Smooth L1 

loss (Huber loss) to prevent overfitting while ensuring stable training. The 𝑉𝜔(𝑠) is the predicted state 

value at state 𝑠, and 𝑉𝜔(𝑠′) is the predicted state value at next state. 

          21,SmoothL1Loss Critic LsVdonersV
             (3) 

In our policy update method, we introduced entropy regularization (equation (4)) to the total loss, 

which encourages exploration by preventing the policy from becoming overly deterministic, thereby 

improving long-term performance. The total loss is shown in equation (5). The parameters 𝑐1 and 𝑐2 

are the coefficients of value function and entropy, respectively, with 𝑐2  decaying over time to 

gradually reduce exploration as training progresses. The decaying function is shown in equation (6), 

its decay factor 𝜆𝑐2
is set to 0.995 . This approach ensures policy improvement while avoiding 

instability caused by excessive updates. 
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3.3. Action Masking 

In the action space of reinforcement learning, certain actions may be invalid in specific states. For 

example, under certain hardware accelerator resource configurations, some rows in the scheduling 

table may correspond to hardware components that do not exist in the given accelerator, meaning that 

their mapping values should not participate in scheduling optimization. To improve the efficiency of 

the reinforcement learning algorithm, we introduce an action masking mechanism. 

The basic principle of action masking is to filter out invalid actions in each state, thereby reducing 

the effective action space for the agent and improving training efficiency. In the implementation, 

action masking is performed by applying a binary mask to each action. When an action is invalid in 

the current state, the mask value is set to 0, indicating that the action is masked; when the action is 

valid, the mask value is set to 1, indicating that the agent can choose that action. Through this 

mechanism, the agent can more efficiently explore valid scheduling strategies, thus accelerating the 

learning process. 

3.4. Brute-force Search for Locally Optimal Solutions 

The reinforcement learning framework presented in this paper is designed to find an optimal 

scheduling sequence in a diverse scheduling optimization problem space and use a search method to 

identify the best scheduling strategy. This paper employs a brute-force search method, conducting an 

exhaustive search for locally optimal solutions within the specific rows selected for optimization 

during each action. 

In scheduling optimization problem, the brute-force search first preprocesses the selected rows in 

the scheduling table to ensure the optimization satisfies the parameter constraints of the DNN layer. 

The detailed steps of the method are as follows: 
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 Preprocessing Step: First, the rows of the scheduling table selected by the action are preprocessed. 

The purpose of preprocessing is to multiply the mapping values in each column of the selected 

rows to obtain the parameter constraints corresponding to each parameter in those rows. For 

example, as shown in Fig. 5, after preprocessing, the products of the columns in each row are 2, 1, 

14, and 7, respectively. 

 Factorization and Exhaustive Search of Combinations: Once the products of the columns are 

obtained, this paper performs factorization to ensure that all possible scheduling combinations 

meet the parameter constraints. For instance, if the parameter value for P is 14, as shown in Figure 

5. It needs to factorize it into values that can be used as mapping values for the hardware resources 

of the selected levels in the scheduling table. Through factorization, we can generate various 

potential mapping value combinations that satisfy the DNN layer's parameter constraints, such as 

{[1, 1, 14], [1, 14, 1], ..., [7, 2, 1]}. After completing factorization, we perform an exhaustive 

search of all possible scheduling combinations. For each possible combination, we map it into the 

scheduling table to form a complete scheduling plan. 
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Figure 5: Example of Brute-force Search Method. 

 Check the Hardware Constraints: During the exhaustive search process, some scheduling 

combinations may exceed the hardware resource limits of the accelerator, such as surpassing the 

capacity of local buffers or the number of processing elements. In these cases, the combinations 

that do not meet the hardware constraints are discarded. The remaining scheduling combinations 

are the valid ones that satisfy both hardware and parameter constraints. 

 Performance Analysis and Optimal Solution Selection: For each valid scheduling combination, 

this paper perform an analysis of energy consumption and execution time. Based on the current 

optimization goal (e.g., minimizing energy consumption or execution time), we select the 

scheduling combination with the best performance as the locally optimal solution, thereby 

generating a more efficient scheduling table. As shown in Fig. 5, we select the optimal combination. 

4. Experiment and Results Analysis 

In this chapter, we validate the proposed reinforcement learning-based dataflow scheduling 

optimization method for DNN accelerators through a series of experiments. We first introduce the 
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experimental setup, including the network structures and accelerator hardware configurations, as well 

as the tuning of hyperparameters. Then, we present the results of the experiments, demonstrating the 

effectiveness of the method in scheduling optimization, and compare it with other existing algorithms 

in terms of energy consumption and execution cycles. 

4.1. Experimental Setup 

For the experiments, we set the actor learning rate to 3 × 10−4, the critic learning rate to 1 × 10−3, 

the discount factor 𝛾 to 0.99, the clipping parameter 𝜀 to 0.2, the parameter of the L2 norm penalty 

𝜆𝐿2 to 0.01, the coefficient of value function 𝑐1 to 0.5, the initial coefficient of entropy 𝑐2
0 to 0.1, and 

the final coefficient of entropy 𝑐2
𝑓𝑖𝑛𝑎𝑙

 to 0.02. Training was conducted up to 3000 episodes. 

4.1.1. Deep Neural Network Configuration 

To validate our proposed scheduling optimization method, we selected several representative deep 

neural network architectures for experiments, as shown in Table 3. These include YOLO v3, 

Inception v4, MobileNet v3, and ResNet-50 [15-17]. These networks have varying parameter 

configurations and computational requirements, providing a comprehensive evaluation of our 

method's generalization ability across different network architectures. 

Table 3: DNN Models. 

Networks # Layers Data size Features 

YOLO v3 75 221MB Large data, non-pow-2 filters 

Inception v4 149 83MB Asymmetric weights 

MobileNet v3 57 8.2MB Depth-wise, point-wise conv. 

ResNet-50 50 38MB Bottleneck layers 

4.1.2. Accelerator Configuration 

In terms of hardware configuration, we evaluated our method on multiple typical DNN accelerator 

architectures, as shown in Table 4, including Eyeriss, TPU, and Simba [18-21]. These accelerators 

feature varying hardware resource configurations, allowing us to assess the effectiveness of our model 

across different hardware setups. 

Table 4: Accelerator Architecture Component Configurations. 

Accelerators Eyeriss v1 Eyeriss v2 TPU v3 Simba 

MAC per PE 1 2 1 64 

Local buffer 

(I/W/O) 
14/448/48 bytes 24/288/80 bytes 8/32/3 kilobytes 4/8/2 kilobytes 

PEs (X×Y) 14×12 4×3 256×128 4×4 

Global buffer 108KB 12KB 32MB 64KB 

Dataflow 

(LB/GB) 
WS/OS WS/OS WS/OS WS or OS/WS or OS 

# of chips 1 2×8 2×4 6×6 

4.2. Accuracy Analysis of Scheduling Optimization 

To further verify the superiority of our proposed method, we compared it with other existing 

scheduling optimization algorithms. Specifically, we selected the commonly used DNN accelerator 
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scheduling methods, such as Timeloop, CoSA, ZigZag, and NeuroSpector, as baselines and 

conducted experiments using the same network architectures and hardware configurations [8,9,11,12]. 

4.2.1. Energy Consumption Comparison 

In the energy efficiency comparison experiments, we measured the energy consumption of each 

algorithm across different network architectures and accelerator configurations. The Table 5 

compares the energy consumption of NeuroSpector (N) and RL-Scheduling (RL). It shows that RL-

Scheduling consistently improves energy efficiency across most models with different accelerators. 

For YOLO v3, RL-Scheduling reduces energy consumption by about 7.3% on Eyeriss and 1.8% on 

TPU v3 compared to NeuroSpector. In MobileNet v3, it provides around 4.6% and 5.2% energy 

reduction on Eyeriss and Simba, respectively, while showing similar performance to NeuroSpector 

on TPU v3. For ResNet-50, RL-Scheduling achieves a 13.4% reduction on Eyeriss, with minimal 

differences on other accelerators.  

Table 5: Energy Consumption Comparison of NeuroSpector (N) and RL-Scheduling (RL) Methods 

Across Different DNN Models and Accelerators. 

 Eyeriss Simba TPU v3 

 N RL N RL N RL 

YOLO v3 1.39E+11 1.29E+11 8.99E+10 9.65E+10 3.64E+11 3.57E+11 

Inception v4 3.21E+10 3.19E+10 2.26E+10 2.66E+10 1.05E+11 1.05E+11 

MobileNet v3 8.54E+09 8.14E+09 8.77E+09 8.32E+09 6.34E+10 6.30E+10 

ResNet-50 1.25E+10 1.09E+10 8.33E+09 9.14E+09 5.44E+10 5.41E+10 

 

The experimental results on Eyeriss comparing with other methods is shown in Figure 7. The 

methods include Timeloop (T), CoSA (C), ZigZag (Z), NeuroSpector (N), and RL-Scheduling (RL). 

For YOLO v3, RL-Scheduling reduces energy consumption by approximately 59.7% compared to 

Timeloop and by about 38.2% compared to CoSA. In Inception v4, RL-Scheduling shows a similar 

trend, with about a 52.7% reduction in energy consumption compared to Timeloop and a 47.8% 

reduction compared to CoSA. For MobileNet v3, where Timeloop and CoSA did not provide results, 

RL-Scheduling achieves similar performance to NeuroSpector and ZigZag. 

 

Figure 7: Energy Consumption Comparison of Scheduling Methods on Eyeriss for YOLO v3, 

Inception v4, and MobileNet v3. 
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4.2.2. Execution Cycle Comparison 

In terms of execution cycles, our method also demonstrated significant advantages. The Table 6 

compares the execution cycles after the scheduling optimization by NeuroSpector (N) and RL-

Scheduling (RL). For YOLO v3, RL-Scheduling reduces the number of cycles by about 26.7% on 

Eyeriss and 1.3% on TPU v3 compared to NeuroSpector. In Inception v4, RL-Scheduling achieves a 

4.1% cycle reduction on Eyeriss. In MobileNet v3, it provides around 10.1% cycle reduction on 

Eyeriss, while showing similar performance to NeuroSpector on TPU v3. For ResNet-50, RL-

Scheduling achieves a 31.5% reduction on Eyeriss, with minimal differences on other accelerators. 

Table 6: Execution Cycle Comparison of NeuroSpector (N) and RL-Scheduling (RL) Methods Across 

Different DNN Models and Accelerators. 

 Eyeriss Simba TPU v3 

 N RL N RL N RL 

YOLO v3 1.56E+09 1.14E+09 1.99E+08 2.19E+08 6.23E+07 6.15E+07 

Inception v4 3.04E+08 2.92E+08 5.53E+07 6.40E+07 1.91E+07 1.91E+07 

MobileNet v3 9.74E+07 8.76E+07 2.85E+07 2.88E+07 1.30E+07 1.29E+07 

ResNet-50 1.62E+08 1.11E+08 2.45E+07 2.72E+07 1.07E+07 1.07E+07 

 

The experimental results on TPU v3, as shown in Figure 8, demonstrate significant improvement 

with RL-Scheduling. For YOLO v3, RL-Scheduling reduces execution cycles by approximately 65.6% 

compared to Timeloop, while CoSA, and ZigZag failed to produce results. In Inception v4, RL-

Scheduling achieves a 61.5% reduction in cycles compared to Timeloop, while CoSA, and ZigZag 

again unabled to provide results. For MobileNet v3, RL-Scheduling performs similarly to 

NeuroSpector, while Timeloop, CoSA, and ZigZag failed to produce results. 

 

Figure 8: Execution Cycle Comparison of Scheduling Methods on TPU v3 for YOLO v3, Inception 

v4, and MobileNet v3. 

4.3. Comparison of Algorithm Efficiency 

In this experiment, we compared the runtime of different scheduling methods on Eyeriss for YOLO 

v3, Inception v4, and MobileNet v3, as shown in Figure 9. The methods evaluated include Timeloop 

(T), CoSA (C), ZigZag (Z), NeuroSpector (N), and RL-Scheduling (RL). 
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Figure 9: Runtime Comparison of Scheduling Methods on Eyeriss for YOLO v3, Inception v4, and 

MobileNet v3. 

In YOLO v3, RL-Scheduling reduces runtime by over 99% compared to Timeloop (T) and ZigZag 

(Z), while performing similarly to CoSA (C) but slightly worse than NeuroSpector (N). In Inception 

v4, RL-Scheduling achieves a runtime reduction of over 99% compared to T, C, and Z, and a 51.5% 

reduction compared to N. In MobileNet v3, RL-Scheduling reduces runtime by nearly 99% compared 

to Z and performs on par with N, while T and C failed to provide results. 

4.4. Experimental Summary 

The results of the above experiments validate the effectiveness and superiority of the reinforcement 

learning-based scheduling optimization method for DNN accelerators. The experimental results show 

that the proposed method not only reduces energy consumption and improves overall computational 

efficiency, but also enables targeted optimization for different types of DNN layers. Additionally, 

compared to existing scheduling algorithms, the reinforcement learning method is better able to 

explore the optimal solutions in large design spaces, demonstrating stronger generalization and 

stability. 

5. Conclusion 

In this paper, we presented a reinforcement learning-based framework for optimizing dataflow 

scheduling in DNN accelerators. By employing Proximal Policy Optimization (PPO) alongside a 

brute-force search for locally optimal solutions, our approach adapts dynamically to hardware 

resource constraints and DNN workload requirements. The experimental results showed significant 

improvements in both energy consumption and execution cycles compared to traditional scheduling 

methods. The framework demonstrates scalability across different DNN models and hardware 

configurations, offering a robust solution for accelerating deep learning tasks with optimized 

performance. 

As the complexity of DNN models continues to grow, the design of accelerator architectures has 

become increasingly intricate, placing greater demands on the generalization capability of scheduling 

models. Although the PPO-based reinforcement learning framework has demonstrated effectiveness 

in scheduling optimization, its efficiency decreases in large state spaces, leading to slower 

convergence and reduced search effectiveness, which limits its application in complex DNN tasks. 

Future research should focus on refining the definition of the state space by incorporating encoder 

techniques to enhance search efficiency, and on improving the generalization capabilities of the 

model, ensuring consistent performance across diverse DNN architectures and hardware accelerators. 

These advancements will help make reinforcement learning-based scheduling methods more scalable 

and adaptable. 
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