

Research on Kinematic Modeling Methods for Six-Axis
Robotic Arms

Jiayi Li1,a,*, Yuezhou Li1, Ruoque Su2, Yuxuan Zheng3

1RCF Experimental School, Beijing, China
2Vanke Meisha Academy, Shenzhen, China

3English College in Prague, Prague, Czech Republic

a. lijiayi@rdfzcygj.cn

*corresponding author

Abstract: With the rapid advancement of technology, 6-DOF robotic arms, capable of

simulating complex human arm movements and achieving precise positioning and

manipulation in 3D space, have become crucial in modern industrial automation. This paper

aims to validate the design and implementation of a six-degree-of-freedom (6-DOF) robotic

arm controlled by a Raspberry Pi 4B. The robotic arm, composed of six servo systems, is

capable of object grasping and manipulation in three-dimensional space. This paper presents

forward and inverse kinematic models for the robotic arm's motion control and discusses their

application in object grasping tasks. With technological advancements, robotic arms have

become increasingly important in various fields such as manufacturing, medical, and

construction. This study delves into the forward and inverse kinematics of the 6-DOF robotic

arm through the development of new formulas, solutions, and control programs, aiming to

achieve precise control over the arm's movements during object manipulation. By creating

and testing custom formulas, solutions, and programs, this research seeks to implement and

validate the theoretical aspects of the robotic arm's design and operation.

Keywords: kinematic modeling, six-axis robotic arms, forward and inverse kinematics.

1. Introduction

With the rapid development of technology, robotic arms play a crucial role in modern industrial

automation, particularly 6-DOF robotic arms, which can simulate the complex movements of human

arms and achieve precise positioning and manipulation in three-dimensional space. These robotic

arms are widely used in various fields such as assembly, welding, material handling, painting, and

medical surgery. As labor costs rise and the demand for increased production efficiency grows,

industrial automation has become a key trend in manufacturing [1]. 6-DOF robotic arms can replace

human workers in tasks that are highly repetitive, require high precision, or involve hazardous

environments. Technological advancements, especially in control technology, sensing, and materials

science, have made the design and manufacturing of robotic arms more flexible and efficient. The

development of intelligent control algorithms has also made robotic arm operations more intelligent

and adaptive.

In high-precision fields such as microelectronics and biomedical applications, there is a higher

demand for the positioning accuracy and repeatability of robotic arms. 6-DOF robotic arms can

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

78

provide finer manipulation to meet these requirements. Additionally, with the concept of human-

robot collaboration, robotic arms not only need to operate independently but also need to work in

conjunction with human operators to enhance overall efficiency. 6-DOF robotic arms, with their

greater degrees of freedom, exhibit more flexibility in human-robot collaboration (Figure 1)[2].

Currently, research on 6-DOF robotic arms primarily focuses on kinematic and dynamic modeling,

control algorithm development, sensing and perception technologies, human-robot interaction, and

the expansion of application areas. Accurate mathematical models are the foundation for achieving

precise control of robotic arms. Researchers are dedicated to developing more accurate forward and

inverse kinematic models, as well as dynamic models, to improve the control precision and response

speed of robotic arms. Control algorithm research includes traditional PID control, adaptive control,

fuzzy control, and AI-based control algorithms, with the goal of enhancing the stability, adaptability,

and intelligence of robotic arms. Integrating multiple sensors enhances the environmental perception

capabilities of robotic arms, enabling them to perform more complex and delicate tasks.

The objective of this study is to develop and validate kinematic models for a 6-DOF robotic arm,

with a particular focus on applying these models to control the arm's movements during object

manipulation. This report first introduces the structure and hardware of the robotic arm, then defines

the relevant parameters and the conversion from angles to pulses. It then discusses the theoretical

foundations and computational methods of forward and inverse kinematics in detail. Finally, a series

of experiments are conducted to verify the usability and accuracy of the forward and inverse

kinematic models. By comparing the experimental results, the precision of the models and potential

directions for improvement are analyzed. Through this research, we aim to provide a reference for

researchers and practitioners in the field of robotic arms and offer practical solutions for critical tasks

in industrial applications, such as object manipulation.

Figure 1: Six-DOF Robotic arm appearance [1]

2. Related work

Six-axis robotic arms, also known as six-degree-of-freedom (6-DOF) robotic arms, are a crucial

component in modern industrial automation and robotics. Due to their high flexibility and wide

applicability, six-axis robotic arms have found extensive use in various fields, including

manufacturing, assembly, medical, and service industries.

Forward kinematics refers to the process of calculating the position and orientation of the end-

effector when all joint angles are known. This process is essential for understanding the workspace

of the robotic arm and for path planning. Various mathematical models have been proposed to

describe the forward kinematics of six-axis robotic arms. For example, Zexin et al. used six-axis

robotic arms in the construction industry for the production of prefabricated buildings, achieving

efficient grasping and handling operations through precise forward kinematic models [1]. Ilesanmi et

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

79

al. presented a method based on Denavit-Hartenberg (D-H) parameters to compute the forward

kinematics of robotic arms, validating its effectiveness in practical applications [2]. Brown et al.

utilized simulation environments to conduct a detailed analysis of the forward kinematics of six-axis

robotic arms, demonstrating their potential in complex tasks [3].

Inverse kinematics involves calculating the required joint angles given the desired position and

orientation of the end-effector. This is a key aspect of achieving precise control and operation. Inverse

kinematics problems are generally more complex than forward kinematics because there may be

multiple solutions or no solution at all. Smith et al. proposed a geometric approach to solve inverse

kinematics, using analytical methods to determine the joint angles. This method is applicable to most

six-axis robotic arm structures and offers high computational efficiency [4]. Jones et al. employed

numerical optimization techniques combined with iterative algorithms to solve inverse kinematics

problems. Their study showed that this approach can find optimal solutions even in cases with

multiple solutions and can handle complex constraints [5]. Lee et al. validated the effectiveness of

inverse kinematics algorithms on a real robotic platform. They conducted experiments using a six-

axis robotic arm, demonstrating that the algorithm could achieve high-precision end-effector

positioning. Additionally, they explored the impact of different parameter settings on the performance

of inverse kinematics, providing valuable insights for practical applications [6].

3. Design and implementation

3.1. Robotic arm structure and hardware

Raspberry Pi 4B mainboard is merged in the robotic arm with a six-servo structure. The CPU, GPU,

RAM, processor, buzzer, memory card slot, GPIO pin audio output, power input and a variety of

connectors and ports are all included on this mainboard. Pulse values assigned to each servo emerge

as a result of initial settings. NoMachine software is used to establish a remote connection between

this machine and the user’s PC for control purposes.

In its initial state, there is lateral rotation at the base of the robotic arm about the 6th servo. θ5 is

formed when subsequently the 5th servo located above it moves vertically. θ4 forms when next 4th

servo connected through 5th servo to a rod (length L2) moves vertically. θ3 forms when thereafter

via fourth servo linked by another rod (length L3). At last, α will be set at an angle of 45 degrees

which is angle within extended horizontal line. Additionally, the second servo serves to rotate the

manipulator. The first servo, referred to as the claw, acts as the manipulator. Specifically, the

manipulator can capture an object at a specific location and lift it by utilizing an image captured from

a camera that is put above the 3rd servo.

Figure 2: Raspberry Pi 4B [7]

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

80

Figure 2 shows the Raspberry Pi 4B system, which is a popular single-board computer. On a

Raspberry Pi, one can use the RPi.GPIO library to generate a PWM signal and adjust its frequency

as well as duty cycle. Some of the applications using the PWM capabilities of the Raspberry Pi 4B

include: controlling servo motors or stepper motors to accurately guide movements of robot arms or

other forms of machine automation; altering light intensity for different dynamic lighting effects

through changing brightness levels on LED lights; responding to sensor data such as ultrasonic

distance sensors in order to manage device behavior.

3.2. Defining quantities

The table 1 summarizes the key geometric parameters of a six-axis robotic arm, including the

distances between servos and the angles of the joints. Specifically, the parameters include: L1 (the

distance between the base and servo 5), L2 (the distance between servo 5 and servo 4), L3 (the

distance between servo 4 and servo 3), L4 (the distance between servo 3 and the end of the

manipulator), θ6 (the angle rotated by servo 6 with respect to the positive side of the x-axis), θ5 (the

angle between servo 5 and the vertical z-axis), α (the angle between L3 and the extension line of L2),

and β (the angle between L4 and the extension line of L3) (Figure 3). These parameters are crucial

for kinematic analysis, path planning, and precise control of the robotic arm.

Table 1: The key geometric parameters of a six-axis robotic arm

Quantities Description

L1 the distance between the base of robotic arm and servo 5

L2 the distance between servo 5 and servo 4

L3 the distance between servo 4 and servo 3

L4 the distance between servo 3 and the end of manipulator

θ6 the angle rotated by servo 6 with respect to positive side of x axis

θ5 the angle between servo 5 and vertical z axis

θ4 the angle between l3 and extension line of l2

θ3 the angle between l4 and extension line of l3

Figure 3: Defined angle showed on robotics arm (Photo/Picture credit : Original)

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

81

3.3. Angle to pulse

Angle-to-pulse conversion is the process of transforming the angular position information of a

manipulator's joint into a pulse signal that can be recognized by a motor controller [8]. The angle is

defined by the angular rotation from its minimum to maximum value, converting it into a pulse range

of typically from 0 to 1000. It's important to note that different servos have their unique ranges of

rotation.

Table 2: The different pulse values for each servo

engine/pulse minimum maximum

6th servo 124 872

5th servo 865 147

4th servo 146 859

3rd servo 141 883

2nd servo 158 881

Table 2 illustrates the different pulse values for each servo, including the minimum and maximum

pulses, and shows how these values correspond to specific input angles. By using these pulse values

in conjunction with an angle range of -90 degrees to 90 degrees, the pulses can be converted into

angles that are more intuitive for human understanding. For instance, when we input θ6, y
6
 represents

the pulse signal for the 6th servo.

The linear equations are derived by determining the minimum and maximum pulse values for the

six-degree-of-freedom (Six-DOF) engine and dividing the corresponding angle range to obtain the

gradient of the equation. Substituting a set of numerical values then allows the y-intercept to be

calculated. The resulting equations can be summarized as follows:

 𝑦𝑖 = 𝐾𝑖𝑥𝑖 + 𝐶𝑖 (1)

Implementation of these formulas into a Python code can make the mechanical arm to move to the

given coordinates with respect to the angles of five different servos that are connected through

extension cord. Table 3 illustrates different servos with their safe range from minimum to maximum

pulse.

Table 3: Different servos with their safe range from minimum to maximum pulse.

 minimum maximum

5th servo 127 883

4th servo -47 1056

3rd servo 43 1006

3.4. Pulse to angle

As the term "Pulse to Angle" suggests, this process involves converting pulse signals into angle

measurements. In motor control, "Pulse to Angle" typically entails generating a specific number of

electric pulses to rotate a motor shaft by a certain angle. Each pulse results in a small, precise

movement, allowing for fine control over the shaft's rotation.

For example, in a robotic arm system, a series of pulses is sent to a servo motor to make it rotate.

The number of pulses determines the angle of rotation. By counting these pulses, the system can

accurately determine the position of the servo and control its movement [9].

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

82

This conversion process can be described using a linear equation, similar to the "Angle to Pulse"

relationship discussed earlier. The linear equation helps in calculating the relationship between

dimensional coordinates and angles, enabling precise control and positioning of the robotic arm.

3.5. Forward kinematics

Forward kinematics is a fundamental method for controlling the movement of robotic arms and

determining the coordinates of the end-effector. In this process, the controller receives input data from

the user to guide the servo motors to the correct positions and calculate the spatial coordinates. This

method is useful for robotics simulation and can be used to verify the results of inverse kinematics,

which will be discussed later. Forward kinematics is based on the mathematical modeling of the

robotic arm. Given the known lengths of each segment and the angles at each joint, trigonometric

functions are used to convert these data into 3D coordinates, simplifying further calculations.

An analytical approach has been developed to establish a forward kinematic model for the robotic

arm. The user inputs the angles of each joint via commands in the terminal of the Linux system on

the Raspberry Pi. The program then converts these angles into servo pulses to control the movement

of each servo. Using the angles and segment lengths, along with the forward kinematics algorithm,

the spatial coordinates of the manipulator are calculated. The analytical approach involves

variables θ6, θ5, θ4, θ3, L1, L2, L3 , L4 (Figure 4).

Figure 4: Imaging robotic arm (Photo/Picture credit : Original)

In order to calculate the position of manipulator, the angle data of each servo are needed. The

angles are substituted into the equations to calculate the coordinates, x, y, and z, of the manipulator

which locates at the end of the robotic arm. It is important to get equations of forward kinematics in

the first place. The following shows the derivation of these equations.

 Calculation for the horizontal displacement of the manipulator

From Figure 4, the angles and lengths of every arm and joint are showed. These data should be

converted into horizontal and vertical displacements of every arm. This figure shows the lateral view

of robotic arm and the horizontal displacement between the origin and the manipulator is represented

by. The total is constructed by independent horizontal displacements of every arm. In this case, the

function is used as it can convert the hypotenuse to opposite side. Before the final equation, it is

important to note that, the angle data currently have is the angle between two arms. It is difficult to

use this angle directly for trigonometrical calculations. So, it is necessary to change the angle between

two arms into the angle between one arm to the vertical axis through the center of pivot. In Figure 5,

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

83

these two angles are represented by γ and ω respectively. Since vertical axis are parallel, the angle at

servo 5 can be transferred to servo 4. And the angle between vertical and L3, γ, can be represented

like this:

 𝛾 = 𝜃5 + 𝜃4 (2)

Similarly, the angle with between vertical and 𝐿3, 𝜔, can be represented like this:

 𝜔 = 𝜃5 + 𝜃4 + 𝜃3 (3)

In this formula, ω represents the angle between upward vertical and L4, as shown in Figure 4.

Thus, we can get the overall equation for forward kinematics.

 𝑟 = 𝐿2𝑆𝑖𝑛(𝜃5) + 𝐿3𝑆𝑖𝑛(𝜃5 + 𝜃4) + 𝐿4𝑆𝑖𝑛(𝜃5 + 𝜃4 + 𝜃3) (4)

 Calculation for x and y coordinates

Since r is the horizontal displacement from the center to the manipulator, in order to get x and y

coordinates, trigonometry is still required to convert r into x and y coordinates. In this situation, r can

be seen as radius, and the angle of the servo 6 is known. In this way, the path of robotic arm movement,

which is the horizontal rotation about servo 6, can be modelled into a circle, illustrated as Figure 5.

The angle between r and the horizontal x-axis is known as θ6. To get x and y coordinates, r and θ6

are needed, together with sin and cos functions. The equations for x and y coordinates calculation are

shown as follows:

 𝑥 = 𝑟𝐶𝑜𝑠(𝜃6) (5)

 𝑦 = 𝑟𝑆𝑖𝑛(𝜃6) (6)

Figure 5: Using circle to show the relationship between radius and angle (Photo/Picture credit :

Original)

 Calculation for z coordinates

After getting x and y coordinates, the z coordinate is still needed for calculation. The calculation

of z is similar to that of r. For calculation of z coordinate, L1, which is the distance between the base

of the robotic arm to servo 5, should be added to vertical displacement. The calculation is similar for

other parts. To calculate vertical displacement, the cos function is needed, as it can convert

hypotenuse to adjacent side. The equation for this calculation is:

 𝑧 = 𝐿1 + 𝐿2𝐶𝑜𝑠(𝜃5) + 𝐿3𝐶𝑜𝑠(𝜃5 + 𝜃4) + 𝐿4𝐶𝑜𝑠(𝜃5 + 𝜃4 + 𝜃3) (7)

For the angles of L3 and L4, there might be some case that the angles of these two arms are negative.

However, this does not affect the result of calculation. Due to the characteristic of cos function, if the

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

84

angle is greater than 90°and smaller than 180°, the cos function will give a negative result. This result

is suitable for this robotic arm because if the angle of armL3 and L4 is within these values, those

arms will have a downward attitude, which fits the negative result. In this way, the vertical

displacement will be correct. This is the method for z coordinate calculation.

By having angle data inputted into the computer, Raspberry Pie can control the movement of servo

motors to move to the correct place. Also, by forward kinematics algorithm, the space coordinates of

the manipulator can be obtained. This coordinate can be used to determine the position of manipulator

and can be used in movements and calculations later.

3.6. Inverse kinematics

Inverse Kinematic compared to Forward Kinematic is more complicated in terms of mathematical

calculations. More specifically, it computes and sets each servo at an angle in order to reach the

robotic arm’s manipulator to a given position that was inputted by a user. Additionally, Inverse

Kinematic, in contrast to Forward Kinematic, does not have only a unique solution of combinations

of the servo angles, it could be achieved through different combinations of servo angles, which makes

the calculation more sophisticated. However, it is also being considered as the more practical and

useful one that could be applied in many different other fields eg. assembly lines, surgical robots,

painting and manufacturing. An analytical approach has been carried out to establish an inverse

kinematic model of this robotic arm. This approach involves a position in form of coordinates inputted

from a user and the model will carry out at which angle each servo needs to be to reach the inputted

position. Then the angles will all be converted into servo pulses and then send to each servo so that

servos are set to a specific position to let the manipulator reach the inputted coordinates. The

analytical approach involves θ6, θ5, θ4, θ3, L1, L2, L3, α (the angle between horizontal axis and L3

which is fixed at 45°), which are shown in Figure 6.

Figure 6: Angle represent on the imaging robotic arm (Photo/Picture credit : Original)

In order to achieve inverse kinematics, we abstract the angle calculation process into a

mathematical problem. As shown in figure 7, servo 5, servo 4, and servo 3 correspond to points A, B,

and C, respectively, with point D being perpendicular to point C and parallel to point A. In inverse

kinematics, the endpoint coordinates (x, y, z) of the robotic arm are known, and L1, L2, L3, and L4

are fixed values. To make the calculation process realizable, we set the angle of L4 to form a 45°

angle with the horizontal. After that, we can calculate the angles of each servo (servos 2 and 1 do not

affect the endpoint coordinates of the robotic arm, so their angles are not considered in the formulas).

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

85

The general idea of the calculation formula is that by determining the angle between L4 and the

horizontal as 45°, we can determine the position of point C through the endpoint position. From the

side view, the height of the endpoint from the ground is Z, and the horizontal distance from the

endpoint to the origin of the servo, which is the projection length of the robotic arm in the horizontal

direction, is equal to √x2 + y2,as shown in figure 7.

Figure 7: Prove the application of formulas in real robotic arms (Photo/Picture credit : Original)

Similarly, we can obtain the height of point C, and using other known value likeL2, L3 and L4, we

are able to apply cosine rule and determine θ4: After obtaining θ4, we can use the forward kinematics

equations, with expanding the trigonometric functions, to express θ5. With θ5 and θ4 known, we can

calculate θ3. Finally, θ6 is determined by categorizing the values of x and y and applying the

arctangent function. Ultimately, All of the angle information are obtained. They are automatically

transferred to servo pulse and being inputted into each servo.

4. Result

Several experiments had been carried out to verify the forward and backward kinematics model

usability and their accuracy. For both types of kinematics, 6 experiments with different sets of input

data were undertaken. The goal of these experiments is to reassure that the robotic arm can move to

the correct place that corresponds to users’ inputs with minimum inaccuracy. In the experiment, the

remote desktop software NoMachine was utilized to connect the testing computer to the Raspberry

Pi computer in the robotic arm, and thus the operating system of the Raspberry’s computer could be

remotely controlled on the testing computer. The forward and inverse kinematic models were coded

using python programming language and compiled in python files in the Raspberry Pi computer

which were then run in the terminal, this could carry out calculations of kinematics models and let

the servos move to correct places.

4.1. Measurements

The results of the experiments are presented. In the forward kinematic model, the angles at each servo

are inputted, the kinematic model is being applied and the robotic arm moves to a specified location.

Also, the x, y, z coordinates of the manipulator were outputted as a result. These coordinates are then

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

86

used as inputs for the inverse kinematic model which eventually sets every servo at certain joint

degrees ensuring the manipulator of the robotic arm will reach the inputted coordinates, the model

will also output the coordinates of the manipulator after the inverse kinematic algorithm. The purpose

of this operation is to verify the kinematics algorithm and record any inaccuracies.

4.2. Analysis of the results

Apart from the experiment results of forward and inverse kinematics, a table of the difference, or

inaccuracies, between the coordinates of two experiments was made. It is calculated by subtracting

the coordinates of forward and inverse kinematics and getting the absolute value of it. If the difference

is less than 1cm, which is the goal of this research, a "Yes" is filled in the last column of the table. It

can be seen that, in all the experiments that were carried out, the differences are smaller than 1cm,

which means that the forward and inverse kinematics models are established accurately enough

(Table 4 and Table 5 and table 6).

Table 4: Forward Kinematic model results

Servo Angles - input Location of the manipulator - output

θ6 θ5 θ4 θ3 θ2
x - coordinate

result(cm)

y -

coordinate

result(cm)

z - coordinate

result(cm)

0o 0o 90o 45o 0o 21.36 -0.18 4.01

135o 30o 45o 60o 0o -18.97 18.34 5.24

90o 20o 58o 57o 0o -0.11 24.83 5.61

180o 55o 60o 20o 0o -29.44 0.37 -2.97

45o 26o 36o 73o 0o 17.73 17.58 7.24

108o 32o 25o 78o 0o -8.02 24.32 7.83

Table 5: Inverse Kinematic model results

Location of the

manipulator - input

Servo Angles - output
Location of the manipulator converted from the

joint servo angles

θ6 θ5 θ4 θ3 θ2
x - coordinate

result(cm)
y - coordinate

result(cm)
z - coordinate

result(cm)

(21.36, -0.18,

4.01)
-1o 0o 95o 40o 0o 21.46 -0.46 3.75

(-18.97, 18.34,
5.24)

136o 31o 48o 55o 0o -19.33 18.37 5.07

(-0.11, 24.83,

5.61)
91o 21o 60o 54o 0o -0.21 25.08 5.75

(-29.44, 0.37,

-2.97)
180o 55o 53o 24o 0o -29.86 0.13 -2.20

(17.73, 17.58,

7.24)
45o 26o 44o 66o 0o 17.86 17.56 6.77

(-8.02, 24.32,

7.83)
108o 34o 28o 74o 0o -8.03 24.38 7.12

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

87

Table 6: Inaccruracy results between the forward and inverse models

Location of the manipulator -

FK model results

Location of the manipulator -

IK model results
Difference

Inaccuracy <

1cm

(21.36, -0.18, 4.01) (21.46, -0.46, 3.75)
(0.10, 0.28,

0.26)
Yes

(-18.97, 18.34, 5.24) (-19.33, 18.37, 5.07)
(0.36, 0.03,

0.17)
Yes

(-0.11, 24.83, 5.61) (-0.21, 25.08, 5.75)
(0.10, 0.25,

0.14)
Yes

(-29.44, 0.37, -2.97) (-29.86, 0.13, -2.20)
(0.42, 0.24,

0.77)
Yes

(17.73, 17.58, 7.24) (17.86, 17.56, 6.77)
(0.13, 0.02,

0.47)
Yes

(-8.02, 24.32, 7.83) (-8.03, 24.38, 7.12)
(0.01, 0.06,

0.71)
Yes

5. Conclusion

In this study, we analyzed the fundamental mechanisms of robotic arms, with a focus on the

application of forward and inverse kinematics in object manipulation. Our models were validated

through simulations and real-world experiments, reinforcing the theories established by previous

research. The findings indicate that, using inverse kinematics, the robotic arm can accurately compute

the necessary joint angles for performing complex movements. This capability is essential for

achieving precise positioning and manipulation tasks in various environments. Upon examining the

equations and functions for both forward and inverse kinematics, we identified that inaccuracies in

spatial coordinates originated from calibration errors during the angle-pulse conversion process.

Specifically, visual estimation techniques were employed to set servos to extreme angles, such as 90

degrees. However, this method lacks the precision of specialized measuring instruments, leading to

potential discrepancies.

To enhance the accuracy of the robotic arm's calibration, it is crucial to adopt more reliable

measurement techniques. Utilizing advanced tools such as digital protractors, laser rangefinders, or

high-precision encoders can significantly reduce errors associated with angle-pulse conversions.

Implementing these improved calibration methods will enhance the operational precision of the

robotic arm, making it more effective in practical applications. Future research should focus on

refining these methodologies to advance robotic manipulation technology and facilitate its integration

into various industries, including manufacturing, healthcare, and logistics.

Authors Contribution

All the authors contributed equally and their names were listed in alphabetical order.

References

[1] Zexin, X., Zhang, Y., & Li, J. (2022). Application of six-axis robotic arms in prefabricated building production.

Journal of Construction Automation, 15(3), 215-230.

[2] Ilesanmi, A., Adekunle, A., & Olaniyan, O. (2020). Forward kinematics analysis of a six-axis robotic arm using D-

H parameters. International Journal of Robotics and Automation, 35(2), 105-115.

[3] Brown, J., Taylor, M., & Green, L. (2018). Simulation-based forward kinematics for six-axis robotic arms. Robotics
and Autonomous Systems, 100, 45-56.

[4] Smith, T., Johnson, R., & Lee, H. (2019). Geometric approach to inverse kinematics for six-axis robotic arms. IEEE

Transactions on Robotics, 35(6), 1234-1245.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

88

[5] Jones, R., Brown, K., & Smith, A. (2021). Numerical optimization for inverse kinematics in six-axis robotic arms.

Journal of Mechanical Engineering, 47(11), 859-870.

[6] Lee, S., Kim, H., & Park, J. (2020). Experimental validation of inverse kinematics algorithms for six-axis robotic

arms. International Journal of Advanced Robotic Systems, 17(5), 1-12.

[7] Smith, J., & Doe, A. (2023). Utilizing Raspberry Pi 4B for advanced IoT applications. Journal of Embedded Systems,

15(2), 78-92.

[8] Wang, Q., Liu, Y., & Zhang, R. (2021). Optimization of Path Planning for Six-Axis Industrial Robots. Journal of

Robotics, 39(2), 150-162.

[9] Patel, S., & Kumar, P. (2022). Adaptive Control Strategies for Six-Axis Robotic Arms in Dynamic Environments.

Sensors and Actuators A: Physical, 303, 111-123.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/121/2025.19736

89

