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Abstract: Power grid stability is key to reliable operation. The rise of renewables and growing 

loads demand better methods to ensure power supply quality. To address these issues, this 

paper proposes a method for power grid stability analysis based on Convolutional Neural 

Networks (CNN). First, the original grid data is preprocessed, and classification features are 

one-hot encoded. Then, a deep learning model based on CNN is designed and trained. Finally, 

the effectiveness of the proposed method is verified through case analysis. The case study 

compares fully connected neural networks with CNN, and the results show that CNN 

outperforms fully connected networks in accuracy, precision, recall, and F1 score.  
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1. Introduction 

1.1. Literature Review 

Power grid stability has long been a critical focus in the field of power systems engineering. 

Traditional methods for stability analysis often rely on physical modeling and simulation techniques, 

such as time-domain simulations and small-signal stability analysis. These approaches, while 

effective in specific scenarios, face challenges in adapting to the growing complexity of modern 

power systems driven by the integration of renewable energy and increasing demand. For example, 

studies on microgrid stability and DC power systems emphasize the importance of adaptive and real-

time methods in ensuring operational reliability. 

Recent advancements in artificial intelligence (AI) have introduced data-driven approaches to 

address these challenges. Machine learning models, particularly neural networks, have demonstrated 

significant potential in processing large-scale power grid data to extract features, predict instabilities, 

and optimize control strategies. Research by Qiao et al. highlights the integration of explainable AI 

techniques to improve decision-making in power system operations. Additionally, CNNs and deep 

learning frameworks are increasingly recognized for their ability to handle high-dimensional data and 

temporal correlations, as shown in work focused on the stability of distributed and renewable-heavy 

power systems. 

The use of CNNs specifically for grid stability analysis offers several advantages over traditional 

AI methods. Their capability to automatically extract spatial and temporal features makes them ideal 

for applications involving sequential data, such as time-series voltage and frequency measurements. 

This aligns with the findings of Li et al., who implemented convolutional architectures to enhance 
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transient stability assessments in renewable energy systems. However, challenges such as overfitting 

and generalization to unseen conditions remain areas of active research. 

In summary, the literature underscores the transformative potential of AI, and particularly CNNs, 

in modernizing power grid stability analysis. This study builds upon this foundation by proposing a 

CNN-based framework that combines high accuracy with practical applicability, addressing existing 

gaps in scalability and adaptability. 

1.2. Backgrounds 

Power grid stability analysis is essential for ensuring the safe, reliable, and efficient operation of 

power systems[1-4]. It evaluates the system’s ability to recover after disturbances, preventing issues 

like voltage collapse and frequency instability, thereby ensuring continuous and high-quality power 

supply[5,6]. With the large-scale integration of renewable energy and the growing demand for 

electricity, power grid stability faces new challenges[7-10]. Any disruption to grid stability could lead 

to power outages for a large number of users, or even the collapse of the entire system, with severe 

consequences. Therefore, analyzing and predicting grid stability is vital for maintaining societal and 

economic stability. 

Grid stability analysis mainly covers dynamic stability, transient stability, frequency stability, and 

voltage stability. In recent years, with the continuous advancement of Artificial Intelligence (AI), AI 

technologies have been widely applied across various fields. In the power system, AI has shown 

advantages in addressing uncertainties and complex systems, especially under the backdrop of high 

proportions of renewable energy and power market reforms. AI provides new approaches for 

addressing these emerging challenges[11-13]. 

Compared to traditional grid stability analysis methods[14,15], AI-based approaches can process and 

analyze large amounts of data, offering real-time and accurate predictions that optimize control 

strategies and improve the efficiency of power system operations . Based on this background, this 

paper proposes a Convolutional Neural Networks (CNN)-based approach for grid stability analysis. 

First, data is preprocessed to ensure completeness. Then, a CNN model is designed to extract data 

features. Finally, the experimental results are analyzed based on metrics such as accuracy, precision, 

and F1 score. The accuracy of CNN on the test set reaches 99.1%, and the F1 score is 98.6, 

demonstrating its advantage in handling complex grid data. 

2. CNN-Based Power Grid Stability Analysis Methods 

2.1. Data Preprocessing 

The accuracy of power grid stability analysis largely depends on the quality and handling of the data. 

Raw data often contains noise, missing values, or inconsistencies, which may affect the reliability of 

the analysis results. Therefore, data preprocessing becomes a crucial step in grid stability analysis. In 

this study, we first preprocess the grid dataset to ensure data cleanliness and applicability. 

First, missing or abnormal values are identified and handled. For missing values, statistical 

methods such as mean or median filling are applied to ensure data completeness. For abnormal values, 

we identify them using descriptive statistical analysis and replace or remove them using the three-

sigma rule, ensuring the accuracy and consistency of the model input data. Additionally, to improve 

the generalization ability of the model, we performed one-hot encoding on classification features and 

removed unnecessary original feature columns. The dataset was then divided into training, validation, 

and test sets to train and validate the model. Stratified sampling based on different states of grid 

stability ensured that each data subset represented the entire dataset’s distribution. 
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2.2. CNN-Based Grid Stability Analysis Framework 

2.2.1. Model Input and Output 

In this study, the model is designed to process multidimensional operational feature data from the 

power grid system. Each row in the dataset corresponds to a specific moment in time, capturing the 

grid's operational state. The input features include key parameters such as time constants, power 

levels, and admittance, which collectively describe the electrical characteristics and behavior of the 

grid under varying conditions. To transform this data into a format suitable for binary classification, 

the ‘stabf’ column, which indicates the stability state, is one-hot encoded. This transformation ensures 

that the output is clearly delineated into two categories: "stable" and "unstable". By removing the 

original stability state label column, the model is provided with these two variables as independent 

labels, enabling it to predict whether the grid is in a stable or unstable state at any given time. The 

ultimate output of the model is a binary classification, where a value of 0 represents an unstable state, 

and 1 indicates stability. This classification serves as a vital tool for grid operators to predict and 

mitigate potential stability issues in real-time, ensuring the grid's continuous, reliable operation. 

2.2.2. Data-Driven Static Voltage Stability Assessment 

Data-driven static voltage stability assessment is grounded in leveraging large volumes of historical 

operational data to extract insights into the behavior of power grids under different conditions. In this 

study, deep learning models, particularly those capable of capturing complex temporal and spatial 

relationships in the data, are employed to learn these operational patterns directly from historical grid 

data. This allows the model to automatically identify critical indicators of static voltage stability 

without the need for manual feature extraction or expert intervention. By training on diverse datasets 

representing a wide range of operating conditions, the model gains the ability to predict static voltage 

stability with high accuracy for new, unseen data inputs. This data-driven approach helps mitigate the 

risk of overfitting that often arises when models are trained on limited datasets, thus enhancing the 

model's generalization ability. Consequently, the model not only provides real-time stability 

predictions but also contributes to a proactive approach in grid management, helping to prevent 

voltage instability before it occurs. 

2.3. Neural Networks 

Power grid stability analysis is a complex task due to the high dimensionality and dynamic nature of 

grid data. Traditional methods often struggle with these challenges, requiring substantial domain 

knowledge and extensive manual intervention. To address these limitations, this study explores the 

use of Convolutional Neural Networks (CNNs) as a tool for efficiently processing and analyzing 

power grid data. CNNs, which have demonstrated remarkable success in various domains such as 

image recognition and speech processing, are particularly suited for capturing spatial and temporal 

patterns within complex datasets. By leveraging their ability to automatically extract hierarchical 

features, this study seeks to enhance the accuracy and predictive capacity of power grid stability 

models. The ultimate goal is to improve the early detection of potential stability issues and provide 

more reliable forecasting tools for grid operators, ensuring a more robust and resilient power 

infrastructure. 

2.3.1. CNNs for Feature Extraction 

Power grid systems typically generate vast amounts of time-series data, which often exhibit intricate 

temporal correlations. These correlations can include fluctuations in voltage, frequency, and current, 
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which evolve over time due to various disturbances or operational changes. CNNs are particularly 

adept at identifying local patterns within this type of data due to their unique architecture, which 

involves multiple layers of convolutions that capture both spatial and temporal dependencies. The 

convolutional filters act as feature extractors, enabling the model to automatically learn the relevant 

patterns from raw grid data without the need for extensive manual feature engineering. This ability 

to learn directly from the data significantly reduces the reliance on human expertise for preprocessing 

and allows the model to discover complex relationships within the data, which might be difficult to 

detect using traditional methods. Additionally, CNNs offer an efficient way to handle high-

dimensional data by using shared weights across different time steps, further improving 

computational efficiency and reducing the risk of overfitting. This approach not only streamlines the 

process of feature extraction but also enhances the overall robustness and accuracy of the power grid 

stability prediction models. 

2.3.2. CNN Architecture and Components 

The CNN model employed in this study starts with one-dimensional convolutional layers designed to 

process sequential data like time series. The convolutional layers use sliding filters (kernels) to scan 

through the data, capturing local temporal features such as sudden dips or spikes that might indicate 

instability in the grid. Each convolution operation produces feature maps, highlighting key patterns 

or trends in the input sequence. 

To enhance the model’s non-linear representation and learning capability, the ReLU (Rectified 

Linear Unit) activation function is applied after each convolution layer. ReLU introduces non-

linearity by mapping negative values to zero while keeping positive values unchanged, thereby 

preventing vanishing gradient issues and improving computational efficiency. 

After feature extraction, max-pooling layers are incorporated to reduce the spatial dimensions of 

the feature maps. Max-pooling effectively selects the most prominent feature within a defined 

window, ensuring robustness against noise and small variations in the data. This step also helps reduce 

the computational cost, making the model more efficient for large-scale grid data. 

In the final stages, a Flatten layer is used to transform the multi-dimensional feature maps into a 

one-dimensional vector. This vector serves as the input to the fully connected layer, which performs 

the final classification task. For binary classification tasks, such as determining whether the grid is 

stable or unstable, a Sigmoid activation function is employed in the output layer. The Sigmoid 

function maps the output to a value between 0 and 1, making it suitable for probabilistic 

interpretations of the stability status. 

2.3.3. Advantages of CNN-Based Analysis 

The CNN architecture proposed in this study offers several distinct advantages over traditional 

methods, making it a highly effective tool for power grid stability analysis. First, one of the key 

strengths of CNNs lies in their ability to automatically extract and prioritize features from raw input 

data, significantly reducing the need for domain-specific expertise. In traditional approaches, feature 

extraction often requires deep knowledge of the underlying physical processes, which can be time-

consuming and prone to human error. In contrast, CNNs are capable of learning these important 

features directly from the data, leading to more generalizable models that can be applied across 

different grids and operational scenarios. 

Second, the hierarchical structure of CNNs is particularly advantageous when dealing with 

complex datasets such as time-series data from power grids. The network’s layered architecture 

enables it to capture patterns at multiple scales, from fine-grained, localized features to more global, 

system-wide interactions. This is critical for understanding the multi-scale and dynamic relationships 
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inherent in power grid systems, where small, localized disturbances can escalate into broader 

instability events if not detected and mitigated early. By capturing both fine-grained and global 

features, CNNs provide a more holistic view of the system’s stability, enhancing the model’s 

predictive capabilities. 

Finally, the robustness introduced by pooling layers and non-linear activation functions is another 

significant advantage of the CNN approach. Pooling layers help reduce the dimensionality of the data 

while retaining essential information, effectively filtering out noise and minor variations in the input 

data. This capability ensures that the model remains resilient to fluctuations or irregularities in the 

data, which are common in real-world power grid operations. Non-linear activation functions, such 

as ReLU (Rectified Linear Unit), further contribute to the model's ability to learn complex, non-linear 

relationships between the features, making it more adaptable to diverse operational conditions. 

By integrating these powerful design elements, the CNN model provides a robust and efficient 

framework for tackling the challenges of power grid stability analysis. It not only enables the 

identification of critical temporal patterns within the grid's operational data but also facilitates the 

early prediction of instability events, allowing grid operators to take proactive measures. This 

predictive capability can lead to significant improvements in grid reliability and efficiency, helping 

to prevent costly outages and ensuring the stability of power systems in the long term. 

2.3.4. Binary Cross-Entropy Loss 

During CNN training, binary cross-entropy loss (BCELoss): is adopted as the loss function. The loss 

function is defined as BCELoss: 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠(𝑦, �̂�) = −
1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)

𝑁

𝑖=1

] (1) 

where 𝑦 is the true label, �̂� is the predicted value, and N is the sample size. 

By training the CNN model, it can automatically learn useful features for grid stability analysis 

from the original time-series data without manual feature engineering. This automatic feature 

extraction capability makes CNNs perform excellently when handling complex and high-dimensional 

grid data. 

3. Case Study 

3.1. Dataset and Preprocessing 

In this section, we evaluate the performance of the proposed Convolutional Neural Network (CNN) 

model for grid stability prediction using actual power system datasets. To ensure the reliability of the 

results, we use a fully connected neural network (FNN) as a comparison. 

The selected power system dataset contains 12 features related to the operational status and 

stability indicators of the grid. These features include 12 variables, such as time constants (tau1-4), 

power (p1-4), and admittance (g1-4).After one-hot encoding and feature engineering, the dataset 

includes labels for system stability (stable) and instability (unstable). The total number of samples is 

10,000, of which approximately 60% represent stable samples, and 40% represent unstable samples. 

3.2. Model Design 

• For the FNN model, we designed a five-layer fully connected network with the structure: (12, 512, 

128, 32, 1). The activation function in the middle layers is ReLU, and the output layer uses Sigmoid 

to compress the output values between 0 and 1, suitable for binary classification (stable/unstable) . 
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• For the CNN model, we added two 1D convolutional and pooling layers on top of the FNN. The 

channels were expanded from 1 to 16, and from 16 to 32, with the convolution kernel size set to 

2, and the pooling windows set to 2 and 4, respectively. Finally, the features were flattened and 

passed through fully connected layers to produce two neurons, and the activation function was 

Sigmoid. 

The BCELoss was chosen as the loss function, and stochastic gradient descent (SGD) was used as 

the optimizer. 

3.3. Model Performance Evaluation 

During data processing and modeling, key metrics used to evaluate the model performance include 

accuracy, precision, recall, and F1 score: 

Accuracy measures the proportion of correctly predicted samples among all samples: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives . 

Precision is the proportion of true positives among the samples predicted as positive: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Recall measures the proportion of true positives among all actual positive samples: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

F1 score is the harmonic mean of precision and recall, reflecting the model’s overall performance 

on imbalanced data: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

To test the generalization ability of the model, the dataset was randomly split into 70% for training, 

15% for validation, and 15% for testing. The model was trained for 2000 epochs with a batch size of 

32 and a learning rate of 0.01. 

During the training process, the loss and performance metrics on both the training and validation 

sets were recorded. As the number of training epochs increased, the loss gradually decreased, and the 

accuracy on both the training and validation sets improved and eventually converged. 

To further verify the model’s effectiveness, we compared the FNN and CNN models. The results 

show that the CNN model better extracted features through convolution operations, improving the 

accuracy of stability predictions. On the validation set, the CNN model outperformed the FNN. 

3.4. Result 

The evaluation results on the test set are shown in the following table: 

Table 1: Results of the performance index evaluation 

Metric FNN Model CNN Model 

Accuracy 98.5% 99.1% 

Precision 98.2% 98.8% 

Recall 97.8% 98.5% 

F1 Score 98.0 98.6 

Loss 0.0035 0.0028 
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The CNN model achieved a slightly higher accuracy than the FNN model, reaching 99.1% on the 

test set, compared to 98.5% for the FNN. This indicates that CNNs have an advantage in feature 

extraction and can better capture hidden patterns in the data. 

In terms of precision and recall, the CNN model also outperformed the FNN. Particularly for recall, 

the CNN achieved 98.5%, significantly higher than the FNN’s 97.8%. This means that the CNN is 

more robust in correctly identifying stable states, especially in complex test scenarios. 

The F1 score, which balances precision and recall, also favored the CNN, with a score of 98.6 

compared to 98.0 for the FNN. This improvement in F1 score indicates that the CNN model can better 

balance precision and recall, avoiding biased predictions. 

The final loss value of the CNN model was 0.0028, significantly better than the FNN’s 0.0035, 

indicating that the CNN model not only performed better in classification but also converged more 

effectively during optimization. 

4. Conclusion 

This paper proposes a method for power grid stability analysis based on Convolutional Neural 

Networks (CNN), demonstrating excellent feature extraction and generalization capabilities. The 

method first uses one-hot encoding to preprocess classification labels, ensuring data completeness 

and consistency. Next, the dataset is split into training, validation, and test sets to guarantee the 

model’s generalization ability. 

Then, the CNN model is designed and trained. The input features include time constants, power, 

and admittance. The model first applies 1D convolution layers to extract local features, with two 

convolution layers (kernel size of 2, with channels 16 and 32) and max-pooling operations to 

gradually reduce feature dimensions. The output layer uses a Sigmoid activation function to perform 

binary classification for stability. 

After 2000 training epochs, the experimental results show that the CNN model outperforms the 

FNN in power grid stability analysis, achieving an accuracy of 99.1% and an F1 score of 98.6. This 

significantly enhances the model’s effectiveness in grid stability prediction, verifying the practical 

application value of this method. 

In the future, it could be expanded to similar power systems and combined with real-time data for 

online prediction, facilitating intelligent management and real-time decision-making, thus laying the 

foundation for monitoring and decision support. 
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