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Abstract: The increasing amount of data in the era of artificial intelligence imposes higher 

demands on the computational power of neural networks, and in order to fulfill this demand, 

there is a pressing need to overcome the limitations imposed by the von Neumann 

architecture's memory wall. Memristors, with their characteristics, are considered the optimal 

electronic devices for implementing neuromorphic computing. Therefore, in order to better 

utilize memristors for the design and research of neuromorphic chips, this paper summarizes 

and comparatively analyzes the memristor characteristics, the RRAM basic principles, 

memristor array research, crossbar array designs based on memristors, and the study of 

memristor-based neuromorphic computing chips through the review. The paper emphasizes 

the challenges that memristor-based neuromorphic computing chips still face in the future, 

such as non-linear resistance variation. In addition, potential future research directions for 

amnesia-based neuromorphic computing chips, including amnesia architecture, programming 

techniques, and instruction set development, are discussed and investigated. 

Keywords: Memristor, In-memory computing, Neuromorphic computing, Neuromorphic 

chip. 

1. Introduction 

We are currently in an era of information explosion, where big data and artificial intelligence are 

advancing rapidly. Artificial intelligence has been widely applied in various fields such as image 

recognition, autonomous driving, and language modeling. Behind these applications lies the 

continuous maturation of various neural network algorithm technologies. Neural networks comprise 

convolutional layers, pooling layers, and fully connected layers. Under the von Neumann architecture, 

the frequent movement of such massive data between storage units and computational units results in 

high latency and energy consumption. However, as semiconductor fabrication approaches its physical 

limits, Moore's Law may soon become obsolete, necessitating a method to break through the memory 

wall. 

The emergence of memristors breaks through the von Neumann architecture by consolidating 

computing and storage units into a single unit, eliminating the need for frequent data movement and 

overcoming the bottleneck of traditional computer architectures. The computation in neural networks 

is analogous to synaptic connections in the human brain, possessing both network weight storage and 

computational capabilities. The working principle of memristors is similar to this, thus utilizing 
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memristors to develop high-performance artificial synapses is currently an important trend in the 

development of high-performance AI chips and overcoming the memory wall.  

2. Memristor 

Chua predicted the existence of a fourth fundamental passive circuit element, the memristor, in 1971 

[1], and it was manufactured by Hewlett-Packard Labs in 2008 [2]. Memristors have non-volatility, 

which makes them suitable for storing the weights in neural network calculations. Furthermore, the 

resistance of memristors can be changed by external signals, which allows the same memristor to be 

used for calculations at different layers of a neural network.  In addition, the current calculation in 

memristors mainly depends on Ohm's law, which is expressed as I =
U

R
, corresponding to the 

weighted multiplication operations in neural networks. Based on the above three characteristics, 

memristors have been widely studied and applied in the development of neural network computing 

chips. 

2.1. Memory Technology Utilizing Memristive Effect 

RRAM is a memory technology that utilizes the memristive effect. The basic structure of an RRAM 

cell consists of a layer of semiconductor thin film between two electrodes. When a voltage is applied 

across the two terminals of the RRAM cell, one or more conductive filaments composed of holes will 

form, which varies depending on the polarity of the voltage. The thicker and more conductive the 

filaments, the lower the resistance. As shown in Figure 1, the current is directly proportional to the 

size of the conductive filament. When the device is in a forward-biased state, oxygen atoms are 

knocked out of the lattice to become negatively charged oxygen ions. Under the influence of the 

forward electric field, these oxygen ions drift towards the anode, leaving behind corresponding 

oxygen vacancies in the metal oxide layer [3]. 

 

Figure 1: (a) the formation process of conductive filaments in bipolar RRAM cells; (b) the 

relationship between the conductive filaments and the applied voltage [3] 

By designing a crossbar array, weight storage in neural network computations can be achieved. 

The resistance values can be refreshed by inputting different currents or voltages, similar to setting 

the weights for each layer of a neural network. As shown in Figure 2, this array design converts analog 

signals through DAC for computation, then converts them back to digital signals through ADC for 

output. Additionally, voltage is applied at both ends to refresh the resistance values (weights). This 

represents the simplest design of a memristor crossbar array, where each cell corresponds to the 

RRAM cell mentioned earlier.  
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Figure 2: Memristor cross-array design 

2.2. Architecture 

Research on the architecture of memristor chips has gradually matured, and all of them improve 

computing efficiency by reducing data transmission. However, each architecture has its own 

advantages and disadvantages. For example, PRIME has higher programmability, but also higher 

design complexity, which leads to challenges in tight hardware integration. The ISACC architecture 

is more energy efficient in large-scale parallel processing tasks, but lacks programmability. The 

choice of architecture needs to be determined based on the specific functions that the chip needs to 

achieve. 

2.2.1. RENO  

In 2015, a research team from the University of Pittsburgh in the United States proposed the RENO 

architecture. This was the first architecture to study the connection relationship of memristor arrays 

on chips and discuss the communication methods between AI acceleration units and controllers [4]. 

As depicted in Figure 4(a), the intersections of horizontal and vertical lines represent memristor arrays, 

while circles denote different routers. The architecture adopts a star-shaped topology for 

interconnection. Figure 4(b) illustrates that the architecture employs mixed signals (digital and analog 

signals) for transmission, with digital signals used for selecting routing paths and analog signals 

utilized for transmitting the computation results of the array. However, this architecture still has some 

issues; for instance, computation results cannot be cached, and hardware implementation costs cannot 

be reduced through methods such as weight and intermediate result reuse [5]. 

 
(a) 

 
(b) 

Figure 3: The RENO architecture; (a) Architecture using a star topology; (b) architecture using mixed 

signals (digital and analog) for transmission [5] 
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2.2.2. PRIME 

The PRIME architecture introduces a novel caching strategy, as shown in Figure 4(a). The 

architecture divides the ReRAM memory into three regions: the storage sub-array, the full-function 

sub-array, and the buffer sub-array. The full-function sub-array has both computing and data storage 

capabilities [6]. In addition, the calculation results of each module are converted to digital form before 

being output to the cache in the register. However, there is still room for improvement in this structure. 

As shown in Figure 4(b), the orange lines represent computational data flow, while the blue lines 

represent storage of computational flow. The star-shaped topology of the interconnection structure in 

this architecture leads to increased data transmission pressure on the top-level routes. Additionally, 

its interconnection via buses may cause a decrease in transmission efficiency due to the arbitration 

cost of buses [5]. 

 
(a)                                                 (b) 

Figure 4: PRIME; (a) The ReRAM memory is divided into three areas; (b)The star-shaped topology 

interconnection structure [6] 

2.2.3. ISAAC 

ISAAC architecture has similarities with the DaDianNao architecture. It employs numerous 

interconnected nodes, with each node structured by a set of tiles. However, the internal structure of 

each tile and IMA differs [7]. The specific architecture is illustrated in Figure 5. The ISAAC 

architecture adopts a hierarchical hybrid topology for better scalability and flexibility, and uses a 

centralized grid interconnection for all units. Internally, each unit uses a bus interconnection structure 

to facilitate efficient transmission between adjacent arrays. Furthermore, using a multi-core 

architecture, the ISAAC architecture assigns the convolutional layer to different memristor arrays, 

which operate in parallel pipelines [7]. However, this architecture does not fully consider the data and 

weight reuse strategy in neural networks, and its programmability is slightly inferior to PRIME. 

 

Figure 5: ISAAC architecture [7] 
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2.2.4. MAX2 

Since the ISACC structure does not consider the weight reuse strategy in neural networks, Mao et al. 

proposed the MAX2 architecture, which discusses data reuse and area utilization [8-9]. MAX2 is 

based on a multi-level multi-array architecture similar to ISACC, and uses a pulse array architecture 

and a strategy of network weight replication and input feature map reuse. This improves the data 

reuse rate, greatly reduces the need for data movement between processing units, and improves time, 

energy, and area utilization. 

3. Neuromorphic chip 

At the same or even lower manufacturing process nodes, due to the characteristics of memristors, the 

performance achievable by integrated chips may far exceed that of chips based on conventional 

CMOS technology. As research on memristor-based architectures gradually matures, many teams 

have begun to utilize CMOS to build peripheral circuits integrated on chips to achieve complete 

computational functions. Moreover, they continuously increase the number of arrays to enhance 

computational power. Presently, memristor-based brain-like computing units typically include 

control circuits, pre-neurons, memristor crossbar arrays, post-neurons, and cache areas as the main 

components. These units then interact with the main processor for input and output operations. 

3.1. Memristive crossbar 

Currently, the most basic memristor array structures include 1R, 1T1R, 1D1R and 1S1R structures, 

with the most commonly used being the 1R and 1T1R structures. The advantage of the 1R structure 

lies in its simple array structure. However, during computation, the influence of leakage current is 

significant, making the design of peripheral CMOS circuits more challenging. The 1T1R structure 

connects the drain of a transistor to the memristor, allowing precise control of the current passing 

through the memristor in series, thereby achieving multi-level conductance programming. The 

transistor also alleviates sneak path current and half-select issues during array programming and 

reading. [10] At the same time, there are also other design strategies, such as the design of multi-

layered cakes and the use of positive and negative weights, to improve stability. 

3.2. Research status 

Wu et al. designed the world's first fully functional memristor-based brain-inspired chip, which 

integrates two 784 × 100-scale and two 100 × 10-scale 1T1R memristor arrays as synapses between 

input neurons and hidden neurons, and between hidden neurons and output neurons [11]. A 

handwriting recognition network is run on this chip, with an accuracy loss of less than 5% compared 

to a full-precision network. 

In addition, the chip designed with the 1R memristor array integrates a 54×108-scale 1R memristor 

array, in which the passivation layer isolates the CMOS circuit from the memristor, similar to the 

multi-layer cake design mentioned earlier. However, this design clearly shows the shortcomings of 

the 1R memristor array, which may pose significant challenges for the design of peripheral circuits. 

In this design, the area of the memristor array is only 0.14 mm2, but the total chip area is 61.64 mm2 

[12]. On this basis, the chip has been upgraded, the original configuration of two 1T1R arrays has 

been optimized to one 2T2R array, and the external circuit for readout operation has been simplified. 

As a result, the accuracy loss in the handwriting recognition network has been reduced to 2% [13]. 
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4. Conclusion 

Research on neuromorphic chips based on memristors has gradually matured, and it has been 

confirmed that memristors do provide practical assistance for the design of artificial intelligence 

accelerators and neuromorphic chips. However, there are still many challenges in improving the 

design of memristors. First, the nonlinearity of the resistance change of memristors affects the design. 

In fact, the resistance change of most memristors is nonlinear, resulting in fewer available resistance 

states in mass-produced arrays. Therefore, the manufacturing process of memristors still needs to be 

strengthened. Furthermore, there is a certain degree of complexity in the peripheral circuitry of 

memristors. Although the use of arrays such as 1T1R or 2T2R has greatly improved the design of 

peripheral circuits compared to chips based on 1R structures, they are still too complex. The presence 

of a large number of ADC and DAC modules may even negate the advantages of high integration and 

low power consumption of the memristor itself [14]. In addition, multi-array neuromorphic 

computing architectures currently have their own advantages and disadvantages, and it is hoped that 

better architectures will emerge. At the same time, research on related programming and datasets is 

still relatively lacking. Current research mainly focuses on sparse coding [15-16]. 
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