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Abstract: Photovoltaic (PV) power prediction is an important tool for optimizing PV power 

generation efficiency and grid operation. PV power is affected by weather conditions, time 

series, and other complex factors, which requires accurate data processing and feature 

extraction. This paper firstly introduces data processing methods in PV power prediction, 

such as missing value processing, outlier detection and correction, and data normalisation, to 

ensure data integrity and improve model training efficiency. Secondly, the applications of 

several machine learning methods are discussed, including linear regression (LR) , support 

vector machines, and random forests for handling nonlinear relationships and assessing 

feature importance. Finally, the advantages of deep learning methods in PV power prediction 

are analyzed. Convolutional neural networks are used for extracting spatial features. Long 

short-term memory networks(LSTM)and Bi-Directional LSTM Networks effectively handle 

time-series data and their global dependencies. This significantly improves prediction 

accuracy and stability. Finally, it concludes and looks at future research trends in Ultra-Short-

Term Forecasting of Photovoltaic Power. 

Keywords: photovoltaic power prediction, data preprocessing, feature engineering, machine 

learning, deep learning. 

1. Introduction 

With the growing global demand for clean energy, PV power generation, as an important renewable 

energy source, has gained widespread attention and application. PV power, which makes use of solar 

energy resources and converts solar radiation into electricity through photovoltaic panels[1], is one 

of the most important ways to achieve the goal of carbon neutrality[2]. The promotion of PV power 

generation not only helps to reduce greenhouse gas emissions, but also alleviates the environmental 

pollution problems caused by fossil fuels[3]. Therefore, promoting the development and optimization 

of PV technology is one of the important tasks in the current energy sector. 

However, PV power generation is characterized by significant intermittency and fluctuation, 

which makes its application in the grid face many challenges. Since PV power generation depends 

on solar radiation, which is an uncontrollable natural factor, its output power may fluctuate greatly in 

different time periods. This volatility poses a serious threat to the stable operation of the power system, 

especially in the scheduling decision-making process, accurate power prediction is particularly 

important[4]. Ultra-short-term PV power prediction, as a key technology to solve this problem, can 
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accurately predict the power output of PV power generation in a short period of time, thus providing 

reliable support for the flexible scheduling and stable operation of the power system[5-7]. 

In order to improve the accuracy of photovoltaic power prediction, artificial intelligence 

technology has been gradually introduced into this field in recent years[8]. Traditional PV power 

prediction methods mainly rely on physical models and statistical methods. Although these methods 

can reflect the changing laws of PV power generation to a certain extent, they often struggle with 

complex and variable meteorological conditions. This is due to the complexity of the models and their 

dependence on the quality of input data. In contrast, artificial intelligence technology, especially deep 

learning algorithms, has powerful data processing capabilities and adaptivity. These technologies can 

automatically learn the complex relationship between PV power generation and its influencing factors 

based on large amounts of historical data. This significantly improves the accuracy and reliability of 

predictions. Therefore, this paper focuses on the research of ultra-short-term PV power prediction 

technology based on artificial intelligence and explores its application and development prospects in 

the field of photovoltaic power generation[9]. 

2. Data processing and feature engineering in PV power prediction 

2.1. Data pre-processing methods  

2.1.1. Missing data  

Missing data are often encountered in PV power prediction datasets. Missing data may be caused by 

sensor failures, data transmission errors, or other unforeseen reasons. Commonly used missing data 

processing methods include linear interpolation, forward padding, backward padding, and so on. 

Linear interpolation is suitable for situations where the data changes smoothly, while forward padding 

and backward padding can maintain data consistency when the data changes drastically. 

2.1.2. Outlier Detection and Correction  

Outliers are usually caused by equipment faults, external disturbances and other factors, which may 

introduce errors in the prediction model and reduce the prediction accuracy of the model. Commonly 

used outlier detection methods include the 3σ principle. This method identifies possible outliers by 

calculating the standard deviation of the data. The box-and-whisker plot (box plot) method also 

detects outliers. It visualizes the location of an outlier by plotting the quartiles of the data. 

2.1.3. Data Normalisation  

As there may be significant differences in the magnitude of different data features, such as 

temperature (degrees Celsius) and solar radiation intensity (Watts/m2 ), these differences may affect 

the convergence and prediction accuracy of the model. Data normalisation can improve the efficiency 

of model training by scaling data with different features to a similar range. Commonly used 

normalisation methods include Min-Max normalisation, which scales the data to the [0,1] interval, 

and Z-score normalisation, which standardises the data based on mean and standard deviation. 

2.2. Feature extraction methods  

Historical power data is one of the important features in PV power prediction, and by analysing the 

trend of historical data, the model can effectively predict the future power output. Utilizing historical 

data not only helps capture daily cyclical changes but also identifies long-term seasonal patterns and 

anomalies. Additionally, when combined with weather forecasts and other environmental factors, 

historical data can enhance the model's generalization ability, allowing for more accurate predictions 
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under varying weather conditions. In-depth analysis of historical data can further optimize the 

operational efficiency of PV systems and improve the reliability and flexibility of grid management. 

3. Machine Learning Approaches in PV Power Prediction 

3.1. Linear Regression (LR)  

LR is one of the most basic and widely used statistical learning methods. It assumes a linear 

relationship between the independent and dependent variables and fits the model parameters by least 

squares to minimise the sum of squares of errors between predicted and actual values. In PV power 

forecasting, linear regression can help to quickly build a model that provides an initial estimate of the 

underlying trend  

Despite the theoretical simplicity and computational efficiency of linear regression methods, they 

exhibit certain limitations when dealing with complex PV power prediction problems. PV power 

generation is highly nonlinearly affected by weather conditions, and relying solely on linear models 

cannot effectively capture the complex effects of temperature, radiation intensity, and other variables 

on power generation[10]. Therefore, although linear regression can be used as a baseline model, it is 

often necessary to incorporate nonlinear methods or more complex models to improve prediction 

accuracy in practical applications. 

3.2. Support Vector Machines (SVMs)  

SVM is a supervised learning model originally used for binary classification problems. It maximises 

the spacing between classes by finding an optimal hyperplane. For regression tasks, SVMs adapt to 

noisy data by defining a "soft interval" and can handle nonlinear relationships by mapping the data 

to a high-dimensional space through a kernel function. 

The advantage of SVM in PV power prediction lies in its ability to handle small-sample, high-

dimensional datasets, especially excelling in cases where data features are complex and non-linear 

relationships are evident. For example, SVM can effectively handle weather data in PV power 

generation. SVM maps meteorological data from a low-dimensional space to a high-dimensional 

space using kernel functions, such as radial basis functions. This approach better captures the complex 

effects of factors like temperature, humidity, and light intensity on PV power. However, SVMs have 

high computational complexity and may require more computational resources and time especially 

when dealing with large-scale datasets. 

3.3. Random Forest (RF)  

RF is an integrated learning method based on decision trees. It improves the stability and accuracy of 

predictions by constructing multiple decision tree models and averaging (regression problem) or 

voting (classification problem) the predictions of these models. The key feature of Random Forest is 

its random sampling of training data and features for each tree, which reduces the risk of model 

overfitting. 

In PV power prediction, RF is able to handle non-linear relationships between input variables and 

high-dimensional features, and is robust to noisy data. Another advantage of Random Forest is its 

built-in feature importance assessment mechanism, which identifies the meteorological factors that 

have the greatest impact on power prediction. The Random Forest model automatically handles 

missing values and is less susceptible to overfitting. It is especially suitable for complex PV power 

prediction problems with many input features. For example, when multiple meteorological variables 

like temperature, humidity, wind speed, and solar radiation are considered simultaneously[11]. 
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4. Deep Learning Approaches in PV Power Prediction 

4.1. Convolutional Neural Network (CNN)  

CNN is an important model for deep learning, which is initially used in the field of image processing. 

CNN is capable of automatically extracting hierarchical features of the input data through the stacking 

of convolutional, pooling and fully connected layers. The convolutional layer effectively reduces the 

number of parameters of the model and improves the training efficiency through local perception and 

parameter sharing mechanism. 

In recent years, CNNs have been applied to PV power prediction, especially in extracting spatial 

features from satellite images and meteorological data. CNNs can identify local patterns in 

meteorological data, such as the movement paths and distribution of clouds, through convolutional 

operations, and this information is crucial to accurately predict PV power. Despite its advantages in 

processing spatial data, CNNs have limited ability to process time-series data. Therefore, CNNs 

usually need to be used in conjunction with other models capable of handling time series (e.g., LSTM) 

to improve prediction accuracy. 

4.2. Long and Short Term Memory Networks (LSTMs)  

LSTMs are a type of Recurrent Neural Networks (RNNs) designed to solve the gradient vanishing 

and exploding problems that are common in traditional RNNs[12]. LSTMs are capable of controlling 

the flow of information through a neural network by introducing forgetting gates, input gates, and 

output gates, and thus excel in dealing with long time dependencies. 

In PV power prediction, LSTM is particularly suitable for dealing with weather data and power 

data with long time dependency. PV power generation is usually closely related to weather conditions 

over the past few hours or even days, and LSTM can effectively capture such long-term 

dependencies[13]. For example, by using an LSTM model, future PV power generation can be 

predicted based on temperature, humidity, and light data over the past few hours. However, the 

training process of LSTM models is complex and usually requires a large amount of computational 

resources and data to ensure the accuracy and stability of the model. 

4.3. Bidirectional Long and Short-Term Memory Network (BiLSTM)  

The BiLSTM is developed based on LSTM. It considers both forward information from past to 

present and inverse information from present to past when processing time series data. Through 

bidirectional processing, BiLSTM is able to capture the global dependencies in the time series more 

comprehensively. 

BiLSTM has a wide range of applications in PV power prediction, especially in scenarios where 

both historical data and future trends need to be considered. For example, when predicting PV power, 

BiLSTM can not only utilise historical meteorological data, but also integrate information about 

upcoming weather changes to provide more accurate and stable prediction results[14]. Although 

BiLSTM can significantly improve the accuracy of the prediction, it has a high demand on 

computational resources and usually requires hardware acceleration devices such as GPUs to increase 

the training speed. 

5. Conclusion 

In photovoltaic power prediction, data preprocessing and feature engineering are key aspects to 

ensure model accuracy. Data preprocessing techniques such as missing value processing, outlier 

detection and correction, and data normalization are widely adopted in existing studies. These 
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methods effectively improve data integrity and consistency. Meanwhile, feature engineering methods, 

such as historical power data analysis and meteorological data feature extraction, help the models 

capture key seasonal and trend variations. In addition, the application of various machine learning 

methods and deep learning methods to PV power prediction demonstrates their advantages in 

handling different types of data and capturing complex relationships. 

However, existing studies still have some shortcomings. Firstly, most models have a high 

dependence on data quality and quantity, and missing and noisy data may significantly affect the 

prediction performance. In addition, many models often lack sufficient robustness in the face of 

diverse and dynamically changing meteorological conditions. Second, although deep learning 

methods excel in handling complex nonlinear relationships and large-scale datasets, their high 

computational cost and dependence on hardware resources limit their popularity in practical 

applications. In addition, the "black box" nature of deep learning models also makes them less 

interpretable, making it difficult to identify and understand the decision-making process and internal 

mechanisms of the models. 

In the future, PV power prediction research can be further developed in the following directions. 

Firstly, data fusion and the utilisation of multi-source data should be enhanced by integrating more 

types of data e.g., satellite images, weather forecast data, etc. to improve the prediction accuracy and 

robustness of the models. Second, more lightweight and efficient deep learning models should be 

explored to reduce computational costs and improve the ability of models to be applied on edge 

devices. In addition, improving the interpretability of models is one of the important directions for 

future research, especially in practical application scenarios that can help understand and optimise 

the operation of PV power generation systems. Finally, considering the long-term uncertainty caused 

by climate change, researchers also need to develop more adaptive models to cope with possible 

future extreme weather events and long-term climate trend changes. Through these efforts, the 

practicality and prospects for widespread application of PV power prediction models will be further 

enhanced. 
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