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Abstract: The aim of this article is to discuss the use of computer vision and GIS-based scene 

perception for autonomous driving in route planning for public transportation. Blending 

computer vision with GIS information, the design dynamically alters routes based on the 

environment’s dynamic variations, such as traffic volume, surface, and obstruction. The 

system design comprises data acquisition modules, computer vision engine, GIS connectivity, 

and adaptive route optimization algorithm. Results from virtual cities reveal significant 

savings in travel time, energy use and flexibility compared to fixed-route approaches. 

Furthermore, the system works well and offers high detection performance in all kinds of 

environments. We describe how it might benefit urban transport infrastructure by describing 

how AVs with real-time vision can optimize routes to speed up time, eliminate delays, and 

increase safety. Future studies will focus on computing burden and performance under 

adverse weather conditions, assessing how new technologies like 5G and IoT could provide 

scalability. This research helps build safer, smarter and more adaptive public transport in 

cities. 
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GIS 

1. Introduction 

As autonomous driving becomes more and more sophisticated, computer vision and geographic 

information systems (GIS) are becoming critical enablers of real-time adaptability for public 

transportation systems. The existing public transit model is severely limited because of deterministic 

routes and schedules which tend to lead to inefficiencies and delays. In the absence of real-time 

availability, such systems are not geared up to adapt to extreme fluctuations in traffic, accidents and 

the unpredictable weather that affect commuters across cities every day. With the growing density of 

cities and the increased need for safe, efficient public transportation, transit systems must respond 

proactively to changing environmental conditions. Computer vision and GIS synthesis are promising 

alternatives to this problem. Driverless vehicles (AVs) with computer vision systems now understand, 

react to, and process urban environments. Using visual analysis such as semantic segmentation and 

object recognition, AVs spot road features, hazards, and patterns of traffic, and take decisions on 

them in real time. GIS information makes geography contextual and gives route planners an 
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understanding of how to analyze and choose routes in space. These combined technologies help AVs 

make conscious decisions on the route they take to keep pace with changing environments and 

optimize travel time and safety [1]. This article seeks to design and test an adaptive route optimization 

system for AV-controlled public transport utilizing computer vision scene recognition and GIS. By 

including real-time information, the proposed system offers significant advantages over fixed-route 

transportation systems, including shorter travel times, greater fuel efficiency, and more freedom of 

route. The results of this research aid in the development of sustainable, accessible public transport 

systems, leading to a smarter urban mobility.  

2. Literature Review 

2.1. Computer Vision in Autonomous Driving 

Computer vision, a key part of autonomous driving, has jumped up and down with the developments 

in deep learning and neural networks. These technologies give AVs the ability to process visual data 

from the environment just like the human visual system. Using CNNs and other deep learning 

algorithms, AVs can recognise and classify objects, detect motion and make real-time decisions to 

provide safe navigation.  Image recognition in AVs lets the system read and respond to complex 

traffic patterns correctly. It entails distinguishing road features (e.g., lane markings, road signs) and 

obstacles (e.g., cars, pedestrians, cyclists) in the driving environment. These occurrences are crucial 

to security in urban environments that are overcrowded and unpredictable and require rapid decision-

making. Moreover, because AVs are not manned by human drivers, it is entirely up to the computer 

vision system in the vehicle to perceive and understand images accurately. Object detection, image 

segmentation, and depth estimation thus form the basis of good AV performance.  Applied computer 

vision to driverless driving isn’t just about recognising objects; it’s about figuring out where in a 

scene objects belong [2]. For example, with the aid of stereoscopic vision or lidar maps, AVs can 

calculate the distance to objects, making safe movements and plan routes much more effective. 

Additionally, such systems use tracking algorithms to follow objects over successive frames to predict 

their movements and movements. Such tools are vital in dynamic environments, where AVs need to 

constantly change their surroundings, anticipate risks and adjust their actions accordingly. Our 

development of powerful image recognition and classification algorithms ensures the security and 

safety of self-driving cars — especially in the crowded transportation environments of the cities.  

2.2. Scene Perception and Object Detection Techniques 

Scene perception aims to enable AVs to be situationally aware, in that they perceive their 

surroundings as a whole. One of the most common scene-processing techniques is semantic 

segmentation, which considers all the pixels of an image as corresponding to a category (road, 

building, pedestrian, car). Semantic segmentation also provides AVs with a "map" of the scene, and 

allows them to determine not only which objects are present, but also where they are located and what 

the scene context is. This information plays an essential role in the decision making of an AV because 

it will enable them to plan a more accurate route and navigate around obstacles.  Object recognition 

algorithms such as YOLO (You Only Look Once) and Faster R-CNN (Region-based Convolutional 

Neural Network) are fundamental to real-time object recognition for autonomous driving. YOLO has 

a reputation for being fast and efficient, processing images in time to offer real-time responses — 

something that’s a huge advantage for AVs [3]. By segmenting the image into grids and estimating 

bounding boxes and class probabilities simultaneously, YOLO is able to pick up multiple objects in 

a single frame. This speed of detection is especially useful in fast-paced environments where 

identification of hazards needs to happen at the right time to ensure security. Faster R-CNN on the 

other hand, can also do an excellent job of correctly recognizing objects in pictures. It uses a region 
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proposal network to suggest object locations and CNNs to define these regions. Despite being slightly 

slower than YOLO, Faster R-CNN is usually used in applications where detection accuracy is needed 

(especially to discriminate similar-looking objects).  For AVs, these structures are often hybridised 

or modified as conditions require. For example, in urban environments where traffic is dense and the 

variety of obstacles is wide, a mixed approach can be deployed to keep detection rates consistent and 

high. Additional layers like motion tracking or behavioural prediction can be used within object 

detection algorithms to predict how objects will move, and AVs can anticipate their path or evasion 

strategies ahead of time. Taken together, these techniques provide an underlying framework that 

allows AVs to perceive, process and act on their surroundings with very high accuracy, even in the 

dark or in bad weather.  

2.3. Route Optimization in Public Transportation 

Route optimization has always been an important area for public transportation, as more effective 

routes can save time, reduce operating expenses, and boost passenger satisfaction. Route optimisation 

using static GIS data, schedules, and past traffic. Such techniques generally create linear maps without 

incorporating real-time road variations such as traffic jams, accidents or severe weather events. As a 

result, passengers may wait longer and the system itself is rigid.  GIS data have made things a little 

better by giving route planners the capability to scan spatial data and select routes on the basis of 

geographic efficiency. For instance, GIS-based analysis can detect the shortest or fastest route 

between stops. Yet, absent real-time scene perception, these approaches are impoverished in response. 

When road conditions become unexpected, public transport buses on a planned path are compelled to 

continue or deviate in a whirlwind, without a mechanism for analyzing alternative routes in real time.  

Combining computer vision and GIS information is an important step towards route optimization in 

public transportation [4]. AVs can see, and react to, the environment with real-time scene perception, 

which allows dynamic route selection. For example, when an AV senses an accident on the horizon 

or a construction zone in the route, it can simply divert itself without causing delay. Computer vision 

also enables AVs to identify congestion on alternative paths, recommending alternatives that reduce 

congestion and arrive on time. This feature is especially useful in cities where traffic flow is highly 

variable and route plans don’t do the trick.  

3. Methodology 

3.1. Proposed System Architecture 

The designed system architecture blends computer vision technology, GIS data and self-driving 

systems to achieve dynamic route optimization. This architecture includes data collection modules, 

computer vision engine, GIS integration, and an adaptive route optimization algorithm. Each module 

interacts with each other, enabling the system to adapt as the environment changes. The data 

collection module acquires real-time data from video feeds, sensors, and GIS maps to extract accurate 

details of the surroundings. This allows the system to recognise hazards, road surfaces and traffic 

conditions, and makes sure that the self-driving car knows what it is looking at [5]. The computer 

vision engine analyzes images and sensor data to identify objects, assess road surfaces, and interpret 

features in the environment. Using neural networks, the vision engine performs semantic 

segmentation and object detection, so that the car is able to recognise pedestrians, traffic, traffic lights 

and road signs, which are all required for situational awareness during automated driving. 
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3.2. Data Collection and Preprocessing 

Data is collected from multiple sources, including GIS maps, real-time video feeds, and sensor inputs 

from autonomous vehicles. These datasets undergo preprocessing, including normalization, filtering, 

and annotation for training computer vision models. Proper labeling of objects and scenes is critical 

to improve the accuracy of scene perception and object detection algorithms, particularly in varied 

lighting and weather conditions [6]. 

3.3. Algorithm Development 

The adaptive route optimization algorithm is central to the system, combining static GIS data with 

real-time scene perception to identify optimal routes while balancing safety, efficiency, and 

responsiveness to changing conditions. To accomplish this, the algorithm considers multiple 

parameters, including the vehicle’s current geographic position (P), the destination point (D), detected 

obstacles (O), traffic density (T), and weather conditions (W). By analyzing these factors, the 

algorithm calculates a weighted score for potential routes, allowing it to dynamically select the best 

path. The scoring formula is designed to prioritize low traffic density, higher travel speeds, fewer 

obstacles, and favorable weather conditions, with weights assigned to each factor to reflect their 

relative importance. The formula is expressed as: 

 Route Score=w1 ⋅
1

T
+w2 ⋅ S+w3 ⋅

1

O
+w4 ⋅

1

C
 (1) 

where T is traffic density, inversely affecting the score (lower traffic density yields a higher score); 

S is speed limit or travel speed on a route; O represents the number of obstacles on the route; C 

includes contextual factors like weather and road conditions; and w
1
,w

2
,w

3
,w

4
 are the weights for 

each factor.  [5]This scoring mechanism allows the algorithm to continually evaluate each route, 

adjusting dynamically as new data from scene perceptior and GIS inputs are received. This 

adaptability ensures that the system prioritizes safety and efficiency in real-time, making it suitable 

for navigating complex urban environments. 

4. Results and Analysis 

4.1. Performance Metrics 

Three performance indicators are used to assess the proposed system: route efficiency, detection 

accuracy and response time. Route efficiency determines how efficient the system is in reducing 

travel time and fuel consumption, and it can help you understand the practical effect of dynamic 

routing changes on operational efficiency. Detection precision is important to verify the credibility of 

object recognition and scene recognition modules as accuracy is directly correlated with the vehicle’s 

ability to make informed, safe decisions in highly structured environments. Finally, response time 

measures the system’s resilience against changing environmental environments such as changing 

densities of traffic, road jams, and weather [6]. This is the value needed to measure system 

responsiveness in real-time. Table 1 below presents the system performance metrics in different urban 

test cases that illustrate the success of the method under different conditions. 

4.2. Scene Perception and Object Detection Accuracy 

The performance of the scene perception and object detection modules were evaluated in various 

urban environments, including lighting, weather and traffic volume. In good weather, daylight, and 

conditions that are free of cloud, the system was able to detect objects with excellent accuracy and 
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proved its endurance in the ideal conditions [7]. But detection rates suffered minor decreases in 

challenging environments, especially when it was dark or in conditions such as heavy rain or fog. The 

system was still robust despite slight reductions in detection speed and accuracy, indicating further 

improvements in these conditions to guarantee total operational reliability. As shown in Table 1, 

accuracy rates were consistently above 92% in favorable conditions, dropping to around 85% in 

adverse weather [8]. 

4.3. Route Optimization Performance 

The route optimisation of the system showed dramatic improvements compared to fixed-route 

approaches. These optimised routes constantly reduced time and fuel usage while ensuring safety 

through less traffic and less obstructions. These benefits were especially noticeable in heavy-traffic 

environments and during peak hours, where real-time management helped the car dodge traffic & 

provide smoother, faster travel. For example, as shown in Figure 1, compared with conventional 

routes, the streamlined ones reduced travel time by an average of 15 percent and increased fuel 

efficiency by around 10 percent [9]. This adaptive routing capability serves the system’s aim of 

improving overall transit efficiency (see Table 1 for travel time and fuel consumption data). 

 
Figure 1: Route Optimization Performance Across Different Scenarios 

4.4. GIS and Vision Integration Efficiency 

Combining GIS information with computer vision real-time drastically enhanced the system’s 

flexibility and adaptiveness to actual environments. Through mixing static location data with dynamic 

scene-seeing, the system could identify and react to road accidents, road closures, and hazards quickly. 

This consolidated design meant that the route could be continuously tweaked to make it faster and 

more efficient to navigate and for passengers to enjoy the ride. The GIS information also enhanced 

the system’s decisions, and enabled it to make fine-grained changes based on existing barriers and 

optimal spatial distribution [10]. In Table 1 we can see that combining GIS with computer vision led 

to greater flexibility and fewer delays than other types of route planning systems. 

Table 1: Experimental Results of System Performance Metrics across Different Scenarios 

Scenario 

Route Efficiency 

(% Travel Time 

Reduction) 

Detection 

Accuracy (%) 

Response Time 

(Seconds) 

Fuel Efficiency 

Improvement (%) 

Daylight, Low 

Traffic 
12% 95% 1.2 10% 
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Daylight, High 

Traffic 
15% 93% 1.5 11% 

Night, Low Traffic 10% 92% 1.3 8% 

Night, High Traffic 13% 89% 1.6 9% 

Rain, Moderate 

Traffic 
11% 87% 1.8 7% 

Fog, Low Traffic 8% 85% 1.9 6% 

5. Conclusion 

This paper demonstrates the capability of computer vision and GIS to augment public transportation 

routes in driverless vehicles, enabling enhanced efficiency, safety and elasticity of the routes. 

Through advanced scene sensing and object recognition, the system is well suited to adapt to changing 

environments, continuously changing paths to cut time and fuel costs and increase passenger safety. 

GIS data is layered on top of the decision tree to allow the system to better serve the demand for 

urban transit with more precision and flexibility.  The results suggest strong upsides for urban public 

transportation, including shorter travel time, reduced fuel consumption and enhanced safety, all of 

which are crucial for providing a more secure and responsive transit experience for users. But some 

limitations — like computation requirements and performance under harsh weather — offer room for 

improvement. To deal with these issues, especially in the real world deployment scenario, further 

studies on improving the system’s scalability and resilience to unpredictable barriers and traffic 

volumes are required [11].  Some of the future research avenues may involve bringing in other new 

technologies like 5G and IoT to continue scaling up real-time data processing, connectivity and 

system efficiency. Moreover, there is the potential for improvements in edge computing that would 

alleviate the computational load and enable the system to be more scalable and efficient across many 

urban environments. It concludes that this research helps the future of smart cities by using computer 

vision and GIS to enable autonomous public transport in order to secure safer, more efficient, and 

sustainable urban transport. 
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