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Abstract: Adaptive cruise control (ACC) is an upgrade to the traditional cruise control system 

in vehicles. This paper presents an adaptive cruise control method based on the Deep 

Deterministic Policy Gradient (DDPG) algorithm. The Actor network computes actions based 

on the current state, adding noise to enhance exploration. The Critic network computes the 

Q-value of the current state-action pair. The Actor target network and Critic target network 

compute the Q-value of the next state-action pair. The gradient descent method is used to 

minimize the loss function of the Critic network, which includes the error between the real 

Q-value and the target Q-value. By integrating an Actor-Critic network, the system 

demonstrates improved adaptability and efficiency over traditional ACC methods, as shown 

through simulated experiments. 
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1. 1. Introduction   

With the development of society and the widespread use of automobiles, people’s demands for 

driving have become increasingly high. The advancement of computer and network-related 

technologies has significantly impacted the automotive industry. Traditional automobiles are 

gradually evolving towards being intelligent, electric, and networked. People can now do more in 

their cars, making them a convenient aspect of life, gradually turning cars into “second homes.” 

However, as the automotive industry progresses, there are higher expectations for vehicle safety, 

comfort, and other performance aspects, which have also introduced numerous challenges, such as 

energy choices, traffic safety, and environmental pollution. Vehicle intelligence has, to some extent, 

addressed these issues. Among them, the Adaptive Cruise Control system (ACC) is an advanced 

driving assistance technology that lightens the burden on drivers and enhances driving safety. Its 

primary functions include cruise control and maintaining a safe distance between vehicles. The 

presence of ACC improves driving safety, increases comfort, promotes traffic fluidity, and is of great 

significance to the general public’s travel needs.   

Author Milanés V and Shladover S E described the development of ACC and CACC control 

system models based on real experimental data, deriving the models from actual vehicle response 

measurements and applying them to simulate simple multi-vehicle following scenarios [1]. Author 

Zhang J and Zhong H modeled lane markings using the Catmull-Rom curve and incorporated a spatial 

attention module to leverage the near-vertical distribution of lane lines, offering both accuracy and 
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real-time performance, effectively addressing the problem of lane detection [2]. Author Zhang Y, Lin 

Y, and others proposed a hierarchical ACC considering collision avoidance, designing a TTC-based 

switching mechanism to select upper-level planning modes to avoid collisions while maintaining 

tracking ability, ensuring vehicle stability [3]. Authors Li, Ye, and Zhibin Li evaluated the impact of 

ACC parameter settings on rear-end collisions on highways, with results showing that the safety 

impact of ACC is largely influenced by parameters, and that combining ACC with variable speed 

limits can greatly enhance safety [4]. An adversarial pedestrian detection model based on virtual 

fisheye image training is proposed by Zhang J and Dou J, transforming features extracted from the 

backbone network into hard examples through introducing a spatial transformation network, using 

adversarial learning during training to enable the network to handle highly deformed objects, 

significantly improving the accuracy of image detection [5]. Authors Dey KC, Yan L, and others 

reviewed CACC systems in terms of communication, driver characteristics, and control, discussing 

the issues faced by current CACC control modules when approaching ideal driving conditions [6]. 

Authors Öncü S, et al. considered a cooperative adaptive cruise control system to regulate vehicle 

spacing in platoons, enhancing traffic flow stability and throughput [7]. Authors TIANBO LIU and 

JINDONG ZHANG proposed an adaptive traffic flow prediction model AD-GNN based on a spatio-

temporal graph neural network, addressing the task of traffic flow prediction [8]. Authors Milanés V, 

Shladover SE, and others introduced the design, development, implementation, and testing of a 

CACC system, providing detailed experimental results to verify the controller’s performance and its 

improvements over commercial ACC systems [9]. Authors JIN, JINGYI, ZHANG, JINDONG, and 

ZHANG proposed an online 3D MOT framework based on detection and tracking, effectively 

improving tracking accuracy [10]. Authors Y Zhao, X Ma et al. constructs a novel OAM generator, 

which successfully reduces channel correlation in LoS scenarios and significantly enhances channel 

capacity. Furthermore, this article emphasizes the electromagnetic characteristics in the physical 

domain that have been previously overlooked, which can propel the development of wireless 

communication by reconstructing the electromagnetic wavefront[11]. Authors C. Zhang and Y. Zhao 

introduces the concept of non-degenerate index mapping in orbital angular momentum (OAM) during 

partial phase plane reception, proposing the establishment of an OAM-based index mapping 

transmission scheme. Additionally, the author offers supplementary index channels to convey 

information through variations in OAM modes[12]. 

Based on DRL, the paper applies the Deep Deterministic Policy Gradient (DDPG) framework to 

achieve adaptive cruise control under DRL. Compared to human drivers, this algorithm demonstrates 

higher adaptability and stability. 

2. Relevant Knowledge   

Reinforcement learning (RL) is made up of two components:: the agent and the environment. The 

key question is how the agent can maximize the rewards it obtains in a complex and uncertain 

environment. During the RL process, the agent interacts continuously with the environment. After 

the agent acquires a certain state in the environment, it outputs an action based on that state, which is 

also referred to as a decision. This action is then executed within the environment, which provides 

the next state and the reward resulting from the action taken by the agent. Figure 1 illustrates the 

flowchart of the RL process.  
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Figure 1: Reinforcement Learning Flowchart 

Q-learning is a RL algorithm based on a value function with the objective of maximizing 

cumulative rewards through the acquisition of an optimal strategy. It employs a Q-table as a storage 

mechanism for the Q-values corresponding to each action in every state, where these Q-values 

represent the estimated future rewards anticipated from performing that action in. The update rule for 

the Q-value can be expressed as:   

 Q(s, a) ← Q(s, a) + α (r + γmaxa′Q (s′, a′) − Q(s, a)) (1) 

Where s denotes the current state, a signifies the current action, r represents the immediate reward, 

s’ indicates the subsequent state, a’ is the next action, α stands for the learning rate, and γ is the 

discount factor. At each time step, the agent chooses an action based on the Q-table, carries it out, 

observes the resulting feedback from the environment, and subsequently updates the Q-table 

accordingly. Through continuous iteration, the Q-table gradually converges to the optimal values. Q-

learning is simple and easy to implement, making it suitable for scenarios with small state and action 

spaces. The A3C (Asynchronous Advantage Actor-Critic) algorithm combines the actor-critic 

algorithm with the concept of asynchronous updates. It trains multiple concurrent environments, each 

with its own actor and critic. The process is as follows: 

Step 1: Initialize multiple concurrent environments. 

Step 2: At each time step, the actor in each environment selects an action based on the current state. 

Step 3: Execute the action, observe the environment’s feedback, and calculate the reward. 

Step 4: The critic calculates the value function based on the current state and action to evaluate the 

action chosen by the actor. 

Step 5: Use optimization algorithms such as gradient ascent to update the parameters of both the 

actor and the critic.  

The approach enables fast training and is suitable for complex environments and multi-task 

learning. The A3C architecture diagram is shown in Figure 2. 
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Figure 2: A3C Architecture Diagram   

3. ACC Based on Deep Reinforcement Learning   

The DRL represents a technological fusion of deep learning (DL) and RL, empowering intelligent 

systems to acquire optimal behavioral strategies through interactions with their environment. It 

utilizes deep neural networks to approximate the value function or policy in reinforcement learning, 

effectively handling high-dimensional data and complex decision-making problems. The DQN (Deep 

Q-Network) algorithm is developed from the Q-learning algorithm, with key differences being: first, 

the DQN algorithm replaces the Q-table in Q-learning with a neural network that approximates the 

action value function; second, the DQN algorithm introduces target networks and experience replay 

units, which enhance the stability of the algorithm. Target Network: The target network furnishes 

stable Q-value estimates for the computation of the loss function. Its parameters are not updated 

frequently during training but are synchronized periodically to avoid instability in the training process. 

Experience Replay Unit: This unit stores the agent’s historical experiences, including state, action, 

reward, and next state, and samples from it randomly to mitigate the temporal correlation of data, 

thereby enhancing training efficiency and stability. The training process of DQN is illustrated in 

Figure 3. 
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Figure 3: DQN Training Process 

The DDPG algorithm is specifically tailored for the RL in continuous action spaces, developed by 

the DeepMind team based on DQN. Its core principle is to introduce deterministic policy gradients, 

allowing the algorithm to achieve efficient learning in continuous action spaces. The Actor network 

computes actions to maximize cumulative rewards, while the Critic network evaluates these actions. 

Through iterative learning, the system refines its decision-making capabilities, achieving efficient 

ACC. The implementation steps of the DDPG algorithm are as follows:   

Step 1: Begin training when the number of data points in the experience replay pool exceeds a 

certain threshold.   

Step 2: Randomly sample a batch of data from the experience replay pool.   

Step 3: Use the Actor network to calculate the action for the current state, adding noise to increase 

exploration.   

Step 4: Use the Critic network to compute the Q-value for the current state-action pair.   

Step 5: Use the Actor target network and Critic target network to calculate the Q-value for the next 

state-action pair.   

Step 6: Calculate the target Q-value according to the Bellman equation: 

 
Step 7: Utilize gradient descent to minimize the loss function of the Critic network, which 

encompasses the discrepancy between the actual Q-value and the target Q-value.  

Step 8: Use gradient ascent to maximize the cumulative expected return of the Actor network, i.e., 

maximize the Q-value output by the Critic network.   

Step 9: Update the parameters associated with the target networks using a soft update mechanism.   
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Figure 4: Basic Structure of the DDPG Algorithm 

The combination of DRL with ACC utilizes the three main parameters of adaptive cruise control 

as inputs, which are then trained. Suitable activation functions for steering and braking are 

subsequently selected. The DDPG algorithm enhances the efficiency of DRL. The update formula for 

the policy network is given in equation (2), where the first half updates the parameters of the Critic 

neural network, and the second half modifies the parameters of the Actor network, increasing the 

probability of selecting that action. 

 ∇θμJ ≈
1

N
∑ ∇ai Q (s, a|θQ)

s=si,a=μ(si) 
▽θμ μ (s|θμ) |si (2) 

The update formula for the Q-value network is presented in equation (3), while equation (4) defines 

its loss function. The goal of the policy network is to modify the Actor network parameters to obtain 

a larger Q-value. 

 yi = ri + γQ′(si + 1, μ′(si + 1|θμ′)|θQ (3) 

 L =
1

N
∑ (i yi − Q(si, ai|θ

Q))2 (4) 

The advantage of using deterministic policy gradients in the adaptive cruise control algorithm for 

intelligent vehicles is that it eliminates the need to debug a large number of parameters between inputs 

and outputs. It only requires the vehicle data from the perception layer and sensor data related to the 

reward function as inputs, with the outputs of DRL corresponding to the vehicle’s low-level control 

of throttle, braking, and steering. 

4. Experiment   

The hardware environment used in this study includes an AMD Ryzen 7 7840H CPU with Radeon 

780M Graphics at 3.80 GHz, 16.0 GB of RAM, and 1TB of disk space. The software environment 

consists of IDLE (Python 3.11 64-bit) running on Windows 11. The experimental results of the 

vehicle adaptive cruise control method based on DRL algorithms are shown in Figures 5, 6, and 7. 
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Figure 5: Program Running Time: Time required for each iteration of the DDPG-based adaptive 

cruise control algorithm.   

The execution time of the algorithm is depicted in Figure 5. The rewards obtained during the 

execution action cycles are displayed in Figure 6, while the duration of each execution action cycle 

is presented in Figure 7. 

 

Figure 6: Execution Action Cycle Rewards: The reward given to each execution cycle of the adaptive 

cruise control algorithm based on DDPG.   

 

Figure 7: Execution Action Cycle Length: The adaptive cruise control algorithm based on DDPG 

corresponds to the length of each execution action cycle   
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5. Conclusion   

This paper utilizes DRL to implement an adaptive cruise control algorithm for vehicles. The core 

principle lies in the introduction of deterministic policy gradients, allowing the algorithm to achieve 

efficient learning in continuous action spaces. It combines the DL technology with the Actor-Critic 

network, inheriting the advantages of the target network and experience replay from the DQN 

algorithm. Through the DDPG algorithm, the following outcomes were achieved: reduced vehicle 

spacing under safe conditions, improved traffic safety, reduced traffic energy consumption, rapid and 

accurate responses to sudden following situations, enhanced decision-making efficiency, and elevated 

levels of vehicle intelligence, meeting the expected results. This fully demonstrates the perceptual 

classification abilities of the DL and the efficient decision-making capabilities of the RL. Future 

research will focus on the practical application of this algorithm. 
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