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Abstract: This paper discusses an autonomous driving control strategy based on Deep 

Reinforcement Learning (DRL), which aims to improve the decision-making ability of 

autonomous driving system in complex traffic environments. Deep reinforcement learning 

has a wide range of applications in many fields, such as robotics and medicine. Autonomous 

driving has emerged as a significant research focus in recent years. By combining deep 

learning and reinforcement learning, the model is able to autonomously learn and optimize 

driving behavior under dynamically changing road conditions. The DRL-based control 

strategy performs well in vehicle obstacle avoidance, pedestrian recognition, and traffic rule 

compliance in the face of complex environments such as city streets, intersections, and 

congested road sections, significantly improving the safety and efficiency of autonomous 

driving. This article will first introduce deep reinforcement learning. Then, the autonomous 

driving control strategy based on deep reinforcement learning is introduced. This research 

provides valuable insights for developing and implementing DRL-based autonomous driving 

systems. 
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1. Introduction 

In recent years, with the rapid development of artificial intelligence and automation technology, 

autonomous driving technology has become an important part of intelligent transportation systems. 

DRL effectively combines deep learning and reinforcement learning. This integration enables high-

dimensional data processing and automatic feature extraction, minimizing manual intervention. This 

approach is particularly suitable for complex decision-making in autonomous driving systems 

because it is particularly suitable for control problems in dynamic environments by interacting with 

the environment to learn optimal decision-making strategies. Research indicates that autonomous 

vehicles can improve road safety while alleviating traffic congestion, reducing environmental 

pollution, and conserving fuel resources [1-3]. Traffic conditions in cities are often very complex, 

especially during the morning and evening rush hours. Autonomous driving systems need to face a 

variety of traffic participants, such as bicycles, motor vehicles, and pedestrians. At the same time, 

autonomous driving systems analyze and process complex traffic signals and massive amounts of 

traffic information. Such complexities pose higher demands on autonomous driving systems' real-

time decision-making and adaptability. Traditional autonomous driving control strategies often rely 

on hand-designed rules and models, and the adaptability and flexibility of these strategies are 
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insufficient in the face of complex and changeable urban traffic environments. Therefore, control 

strategies based on Deep Reinforcement Learning (DRL) have emerged as the times require, and have 

become a powerful tool to solve various challenges in autonomous driving. 

This article begins with an overview of DRL, covering its operating principles and modes. Markov 

decision-making process is also highlighted in this paper as an important concept used to describe 

reinforcement learning tasks. The autonomous driving control strategy based on deep reinforcement 

learning will be introduced in the second part of this paper. This section explains the fundamentals of 

autonomous driving systems, particularly sensor operation and data processing mechanisms. This 

article will focus on the combination of autonomous driving systems and deep reinforcement learning. 

At the same time, this section will also introduce the lateral motion control algorithm in the 

autonomous driving system. 

2. Autonomous Driving Control Strategy Based on Deep Reinforcement Learning 

In recent years, algorithm-based technology has been continuously advancing. As a result, the topic 

of autonomous driving systems (ADSs) has received widespread attention from researchers. Mature 

and efficient autonomous driving technology requires strong algorithms. The autonomous driving 

control strategies are a set of methods designed to ensure the safe and efficient operation of 

autonomous vehicles. One crucial control target is to minimize the difference between the dynamic 

position and attitude of the real car and those of the dynamic waypoint (virtual car). This enables the 

autonomous vehicle to accurately follow the path through the waypoint [4]. 

Deep learning and reinforcement learning (RL) are important branches in the field of artificial 

intelligence. While they have different applications and theoretical foundations, these two approaches 

can be combined to form deep reinforcement learning. For example, in some complex tasks, deep 

learning can be used to extract features, while reinforcement learning (RL) is responsible for decision-

making and policy optimization. The Deep Reinforcement Learning model combines deep learning 

and reinforcement learning (RL) to solve more complex decision-making problems. The application 

of deep reinforcement learning to the autonomous driving control strategy can solve the problem of 

autonomous driving in the face of complex road conditions and dangerous driving environments. The 

main function of this approach is to utilize deep reinforcement learning methods based on sensing 

and vision. These methods are used to detect roads, vehicles, and pedestrians. By doing so, the system 

can avoid dangers and prevent traffic violations. 

2.1. Deep reinforcement learning 

A fundamental element of reinforcement learning (RL) is the agent's ability to learn effective 

behaviors. This process involves the gradual modification or acquisition of new skills and actions. 

Another critical feature of RL is its reliance on trial-and-error experiences, in contrast to approaches 

like dynamic programming, which operate under the assumption of having full prior knowledge of 

the environment. Consequently, an RL agent does not need complete information or control over its 

surroundings; it simply requires the capacity to interact with the environment and gather data. In 

offline scenarios, experiences are collected beforehand and then utilized as a batch for learning, which 

is why this approach is also referred to as batch RL [5]. 

Deep learning models are characterized by their use of multiple layers that represent data in various 

forms. Essentially, they consist of a series of foundational components, each serving a specific 

purpose. These components include autoencoders for data compression and feature learning, 

Restricted Boltzmann Machines (RBMs) for probabilistic modeling, and convolutional layers for 

processing grid-like data such as images. During the training phase, raw input data is introduced to a 

multi-layered network. Each layer performs nonlinear transformations on its inputs, generating 
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outputs that serve as inputs for subsequent layers in the deep architecture. The representation 

produced by the final layer can be utilized to build classifiers or applications that benefit from a more 

efficient and high-performing hierarchical abstraction of the data. This hierarchical abstraction allows 

the model to capture increasingly complex features at each layer, from simple edges to more intricate 

patterns. By applying nonlinear transformations to their inputs, each layer aims to learn and identify 

the underlying factors that explain the data. This iterative process ultimately results in the 

development of a hierarchy of increasingly abstract representations [6]. 

Markov decision process (MDP) (Figure 1) is an important part of reinforcement learning. It 

provides a mathematical framework for modeling decision-making in situations where outcomes are 

partly random and partly under the control of a decision-maker. Reinforcement Learning (RL) is an 

area of artificial intelligence influenced by behaviorist psychology. It operates on the principle of 

learning through trial and error while interacting with a stochastic environment. The foundation of 

RL lies in the concept of a Markov Decision Process (MDP), which addresses sequential decision-

making problems. An MDP is formally defined by a 5-tuple. This tuple includes: a set of states and 

actions (S, A), a reward function (R), a state transition probability matrix (P), and a discount factor γ. 

The matrix P describes transitions from each states to its successor states s′, while γ falls within the 

range [0, 1]. This discount factor prioritizes more immediate rewards over those expected in the future. 

An environment qualifies as an MDP when the state S encompasses all the information necessary for 

the agent to make optimal decisions [7]. 

 

Figure 1: Markov decision process [7] 

A reinforcement learning (RL) agent can be described using a Markov Decision Process (MDP). 

This situation is referred to as a finite MDP when both the state and action spaces are finite. Finite 

MDPs are critical in RL studies, with a significant portion of the literature assuming that the 

environment follows this structure. In the finite MDP framework, the RL agent interacts with the 

environment by executing actions, which lead to observations and rewards. Through these 

interactions, the agent learns from its experiences and enhances its decision-making strategies over 

time [6]. 

The article "A View on Deep Reinforcement Learning in System Optimization" reviews various 

efforts to apply deep reinforcement learning (DRL) in the field of system optimization and introduces 

a set of evaluation metrics [8]. It discusses the challenges associated with integrating DRL into 

systems and provides a detailed description of how to formulate the DRL environment. Additionally, 

the paper proposes a framework and toolkit for assessing DRL solutions, illustrated with concrete 

examples like DeepRM. The authors conclude that while DRL holds significant promise for system 

optimization, it also faces challenges such as low sample efficiency, instability, and limited 

generalization ability. Importantly, the article presents a novel set of key indicators for evaluating 

Proceedings of  the 5th International  Conference on Materials  Chemistry and Environmental  Engineering 
DOI:  10.54254/2755-2721/128/2025.20209 

81 



 

 

DRL applications in system optimization, which is expected to enhance the standardization and 

reproducibility of future research in this area. 

2.2. Autonomous driving control strategy based on deep reinforcement learning 

Due to the limitations of traditional machine learning methods in implementing key functions of 

autonomous driving such as scene understanding and motion planning, researchers have shifted their 

focus to deep learning and reinforcement learning methods. This once again demonstrates the 

potential of deep reinforcement learning in enabling these functions. Autonomous driving systems 

rely on various sensors, such as cameras and radar, to collect real-time environmental information for 

identifying obstacles, traffic signs, and other vehicles. After processing this data, deep reinforcement 

learning (DRL) models use real-time information to learn through trial and error, optimizing driving 

strategies and decision-making processes. Sensors provide the essential environmental perception, 

while DRL intelligently controls the vehicle based on this information, enabling safe and efficient 

autonomous driving functionality. 

Sensors are essential for measuring and detecting various environmental properties and tracking 

changes over time, providing the crucial input data for deep reinforcement learning models in 

autonomous driving systems. They can be classified into two main types: (1) Exteroceptive Sensors: 

These sensors gather information about the surrounding environment of the vehicle. Notable 

examples include cameras and Light Detection and Ranging (LiDAR), which help identify obstacles, 

road conditions, and other critical elements. (2) Proprioceptive Sensors: These sensors focus on the 

vehicle's internal parameters. This category encompasses systems such as the Global Navigation 

Satellite System (GNSS) for precise location tracking and wheel odometers that measure the distance 

traveled. 

By integrating data from both types of sensors, autonomous vehicles can effectively understand 

their environment and maintain a comprehensive awareness of their own dynamics [9]. Autonomous 

driving systems necessitate the integration of data from various sensors. These sensors can be 

categorized based on the dimensionality of their data output: low-dimensional sensors, such as 

LIDAR, produce relatively simple data structures, while high-dimensional sensors, like cameras, 

generate complex, multi-layered data. Interestingly, while raw camera images are high-dimensional, 

the essential information for autonomous driving tasks is significantly lower in dimensionality. The 

critical components that influence driving decisions include moving vehicles, available free space on 

the road ahead, the location of curbs, and other relevant environmental factors. These key elements 

form the basis for the autonomous vehicle's decision-making process.  

In this context, intricate details of vehicles are often irrelevant; only their spatial positions matter. 

As a result, the memory bandwidth required for pertinent information is considerably reduced. By 

effectively extracting this relevant data and eliminating non-essential information, this paper can 

enhance both the accuracy and efficiency of autonomous driving systems. This strategy also 

minimizes the computational and memory demands, which are vital for the embedded systems that 

will support the autonomous driving control unit. Overall, focusing on essential information 

optimizes processing capabilities and improves performance in real-time driving scenarios [10]. 

The primary objective of the perception module is to create an intermediate-level representation 

of the environment, such as a bird's-eye view map that illustrates all obstacles and agents. This 

representation serves as input for a decision-making system that ultimately determines the driving 

policy. Key elements included in this environmental state are lane positions, drivable areas, locations 

of agents like vehicles and pedestrians, and the status of traffic lights, among others [11]. Each of 

these elements plays a crucial role in informing the vehicle's decision-making process, enabling it to 

navigate safely and efficiently. Uncertainties present in perception can propagate through the 

information processing chain, potentially leading to incorrect decisions or dangerous situations. This 
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highlights the necessity for robust sensing to ensure safety. To improve the reliability of detection, it 

is important to incorporate multiple data sources. This can be achieved by integrating various 

perception tasks, such as semantic segmentation, motion estimation, depth estimation, and soiling 

detection, which can be efficiently unified into a multi-task model [11]. 

Research on autonomous driving control issues based on DL and RL technologies has yielded 

significant results. However, there are still many challenges to overcome before fully autonomous 

vehicles can become widespread. In dense traffic conditions, autonomous vehicles often face 

significant challenges in making appropriate driving decisions due to the high mobility of various 

road users, including other vehicles, bicycles, and pedestrians. Deep learning (DL) and reinforcement 

learning (RL) techniques have shown promising results in managing such complexities. Nevertheless, 

more intricate scenarios, like intersections and crosswalks, still pose significant challenges and 

require further exploration. Current decision-making methods typically rely on supervised learning 

to replicate human driving behavior. Unfortunately, these approaches do not encompass all potential 

driving scenarios, and it is extremely challenging to gather comprehensive data for every situation, 

especially as these scenarios can vary significantly from one country to another. Additionally, 

researchers must focus on two critical goals: ensuring the robustness and flexibility of their proposed 

solutions. These qualities are essential for enabling autonomous vehicles to navigate any scenario 

without needing prior knowledge, thus making them truly adaptable to real-world conditions [9]. 

In the article "Research on Strategy and Algorithm of Lateral Motion Control for Autonomous 

Driving Electric Vehicle", the author establishes a safety evaluation model for curvilinear driving, 

including slip stability and rollover stability [12]. Through the simulation of vehicle dynamics 

software, the functional relationship between the safe driving speed and the curve radius (Figure 2) 

was established. The upper level automatic steering control strategy is innovatively designed. The 

lower lateral motion control algorithm matched with the upper control strategy was studied, and the 

optimal control of the lateral motion deviation was realized. Real vehicle experiments were carried 

out to verify the performance of the designed control strategy and algorithm. The experimental results 

show that the control strategy and algorithm designed in this paper perform well under the conditions 

of straight road and large curvature curve, and have good real-time performance and stability. 

 

Figure 2: Motor movement diagram [12] 

The article "A Survey of Deep RL and IL for Autonomous Driving Policy Learning" constructs a 

literature classification system from a systems perspective and identifies five patterns for integrating 

DRL/DIL models into autonomous driving architectures [13]. The authors comprehensively review 

the design of DRL/DIL models for specific autonomous driving tasks, including the design of state 

space, action space, and reinforcement learning rewards. Creatively and comprehensively analyzes 
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the application of DRL/DIL in autonomous driving from multiple perspectives, providing a 

classification of systems and in-depth discussions such as driving safety, interaction with other traffic 

participants, and environmental uncertainty. Finally, the authors propose the direction of future 

research and possible themes for exploration. 

In the article "Formulation of Deep Reinforcement Learning Architecture: Toward Autonomous 

Driving for On-Ramp Merge", the authors focus on the application of Deep Reinforcement Learning 

(DRL) techniques to achieve autonomous driving during the merging of highway ramps [14]. The 

authors modeled the interactive environment through a Long Short-Term Memory (LSTM) (Figure 

3) to extract the internal state from historical driving information. The internal state generated by the 

LSTM is then passed as input to the Deep Q-Network (DQN) for action selection to optimize long-

term rewards. Then, the DQN parameters are updated through empirical playback and the target Q 

network to avoid the local optimal and divergence problems. Finally, the reward function is designed 

to guide the learning process by considering security, smoothness and timeliness. The authors 

innovatively combine LSTM and DQN to capture the impact of historical information on long-term 

rewards, and improve the reliability of the strategy. 

 

Figure 3: LSTM architecture [14] 

3. Conclusion 

In this paper, the author provides a comprehensive overview of the advancements and future 

applications of autonomous driving control strategies leveraging deep reinforcement learning (DRL). 

As autonomous driving technology continues to progress rapidly, DRL, an emerging artificial 

intelligence approach, is being increasingly applied across various domains, including vehicle control, 

path planning, and decision-making. The paper reviews recent literature to analyze key technologies, 

model architectures, and practical applications, summarizing their benefits and challenges in complex 

traffic situations.  

The authors' comparative analysis of existing research indicates that deep reinforcement learning 

significantly enhances the autonomous decision-making capabilities of vehicles in dynamic 

environments, optimizes driving behavior, and improves safety. Among various applications, DRL 

demonstrates particular effectiveness in managing uncertainties and adapting to complex traffic 

scenarios. This paper emphasizes the principles and functions of essential algorithmic processes, such 

as Markov Decision Processes (MDP), within the DRL framework. The paper further explores how 

autonomous driving integrates various technologies, from GNSS to LSTM networks and DQN. 

Current research challenges include limited model interpretability, extended training periods, and 

poor adaptation to extreme conditions. Future research should concentrate on optimizing algorithms, 

integrating data from various sensors, and validating applications in real-world scenarios. Beyond 

technical aspects, addressing policy, regulatory, and ethical issues remains crucial for ensuring safety 
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and public acceptance. In conclusion, autonomous driving control strategies based on deep 

reinforcement learning offer significant potential for future applications, providing robust support for 

developing a more intelligent transportation system. This research provides valuable insights to 

advance autonomous driving technology development. 
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