
 

 

Systematic Analysis on Performance Optimization of Tree 
Multipliers 

Haoran Yu1,a,* 

1School of Electronic Information Engineering, Anhui University, Hefei, China 

a. P12214186@stu.adu.edu.cn 

*corresponding author 

Abstract: The microprocessor chip is the core technology of the computer industry, and the 

multiplier is an important computing unit of the microprocessor. Its computing speed and 

area performances determine the performance of the microprocessor, and its structure 

determines whether it is easy to implement. Tree multipliers are widely used due to their 

superior performance. This article analyzes and compares the performance of several 

typical tree structures, including Wallace tree, Dadda tree, ZM tree, and OS tree, and 

compares various performance optimization methods, such as optimizing compressor 

structure, optimizing tree structure, and using PPA. This article found that the Wallace tree 

and Dadda tree have the fastest speed, but their irregular structures are not conducive to 

implementation. ZM tree and OS tree are two types of delay balancing trees with regular 

structures, but sacrifice speed and area performances. The optimization of compressor 

structure and tree structure, as well as the use of PPA, have reduced latency, but may lead to 

an increase in area. This article summarizes the current development of tree multipliers and 

has high reference value in future research. 

Keywords: Microprocessor, Tree multiplier, Performance optimization. 

1. Introduction 

The design of microprocessor chips is one of the core technologies in the entire computer industry, 

and the performance of microprocessors is constantly improving at an astonishing speed, which is 

driving the rapid development of the entire information industry. The multiplier is an important 

computing unit in microprocessors, serving as the core of real-time image processing and digital 

signal processing. Its computing speed determines the speed of the microprocessor. Its area affects 

the size of the microprocessor. The characteristics of its structure determine whether it is easy to 

implement in VLSI. That's why optimizing the speed, area, and structure of the multiplier is crucial 

for the overall performance of the microprocessor. Wallace first proposed and designed the tree 

multiplier structure in 1964 [1]. Several scholars proposed other typical tree multiplier structures, 

which have different advantages in speed and area. Many scholars have optimized these structures 

from multiple perspectives and achieved excellent performance.  

This paper begins with an introduction to the fundamental principles and classifications of tree 

multipliers, including common structures such as Wallace tree and Dadda tree. Subsequently, this 

review delves into the diverse performance optimization strategies posited within extant literature, 

including the design of novel compressors, the refinement of tree structures, and the implementation 
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of more advanced adders for the final summation. The paper concludes by summarizing the current 

development in the field, providing a valuable reference for subsequent studies. 

2. Analysis of typical tree structures 

2.1. Wallace tree 

Wallace noted that while it is possible to add two or more numbers within a single adder, the 

growth in logical complexity is not proportional to the increase in speed, making it an impractical 

solution. A novel approach involves utilizing a pseudo adder, which can add three numbers together 

but yields two outputs instead of one. This reduces the number of remaining digits to be added, 

hence the term ‘3-2 Compressor’ or ‘Carry Save Adder (CSA)’. Since it can operate along its digital 

stages without carry propagation, it operates faster than traditional adders. 

Furthermore, Wallace highlighted that employing multiple pseudo adders for parallel operation 

can decrease the number of digits by 1.5 times. By achieving a significant enhancement in 

computational speed while avoiding an increase in hardware costs, it also simplifies the control 

circuitry. Wallace employed this methodology in the design of tree-structured multipliers. 

The Wallace tree multiplier comprises three phases. The initial phase involves the formation of a 

partial product matrix. The second phase entails the reduction of the height of this partial product 

matrix to two through parallel operations. The final phase employs a carry-propagate adder to 

combine the two rows. Figure 1 below shows the addition tree as designed in the Wallace tree 

architecture. Figure 2 shows dot diagram for an 8 by 8 Dadda multiplier. 

 

 

 

Figure 1: Wallace tree structure using CSA 

capable of summing up 18 partial products. 
 Figure 2: Dot diagram for an 8 by 8 Dadda 

multiplier. 

2.2. Dadda tree 

Dadda introduced an alternative classical structure for parallel multipliers [2]. In the design, Dadda 

replaces Wallace's pseudo-adder with ‘parallel (m, n) counters’. These counters are characterized by 

having ‘m’ inputs and ‘n’ outputs, where ‘m’ is less than or equal to ‘n’. The binary value 

represented by the ‘m’ outputs corresponds to the count of ‘1’s present among the ‘n’ inputs. The 

Dadda tree multiplier, akin to the Wallace tree multiplier, operates through three distinct stages; 

however, Dadda's approach employs the minimal number of (3, 2) and (2, 2) counters at each level 

during the partial product reduction phase. Dadda invented the dot diagram, and the figure 2 above 

shows the 8 by 8 multiplier designed by Dadda. This multiplier requires four reduction levels, with 

matrix heights of 6, 4, 3, and 2, respectively The points connected diagonally in the figure represent 
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the output of the (3,2) counter. The two points connected by cross diagonals represent the output of 

the (2,2) counter. A total of 64 AND gates, 35 (3,2) counters, 7 (2,2) counters, and a 14 bit carry 

propagation adder are required to form a 16-bit product. 

Dadda further hypothesized that counters of varying dimensions could be feasibly implemented. 

The 4-2 compressor has excellent characteristics, including outstanding balance and symmetry. 

Related studies have shown that the multiplier composed of 4-2 compressors has good performance 

[3]. It has been widely used as a fundamental element in tree multiplier architectures. 

Habibi and Wintz believe that Dadda's method of placing counters is optimal [4]. Townsend's 

research shown in table 1 also indicates that under the exclusive use of (3,2) and (2,2) counters, 

Dadda tree multipliers exhibit reduced delay, suggesting a superior speed, along with a lower 

complexity compared to Wallace tree multipliers [5]. 

Table 1: The comparison of delay and complexity between Dadda tree and Wallace tree. 

Multiplier Size Dadda Delay Wallace Delay Dadda Complexity Wallace Complexity 

4 by 4 19 21 104 104 

8 by 8 37 42 528 552 

16 by 16 69 77 2336 2476 

32 by 32 133 145 9792 10283 

2.3. ZM tree 

Zuras and McAllister proposed a method for constructing balanced delay trees, which has a better 

area-time product than binary tree [6]. Figure 3 shows the structure of ripple chain.  

 

Figure 3: The structure of ripple chain. 

The number represent the accumulated gate delay. Zuras and McAllister decomposed the ripple 

chain into sub-chains and then serially combined the results of these sub-chains. This structure 

shown in figure 4 introduces limited additional layout complexity but offers substantial 

acceleration.  

 

Figure 4: Second-order balanced delay tree. 

When the total delay of the up chain equals that of the down chain, a delay balance is achieved. 

If 64 inputs are to be combined to produce a single result, this structure, utilizing 2 wires, would 

incur 11 delays. The ripple circuit, despite having only one wire, would incur 63 delays. A binary 

tree, with only 6 delays, necessitates 6 wires. Zuras and McAllister demonstrated that a k-order ZM 

tree can accomplish the tasks of a 2k-order binary tree, albeit with higher latency, yet it saves nearly 

half of the area. 

Its structure is very regular and requires very few macro modules, making it highly valuable for 

use. The figure 5 shows the ZM tree multiplier structure. In the research shown in figure 6 

conducted by Zuras and McAllister, it was observed that the delay performance of the fourth-order 
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balanced delay tree gradually deteriorates in comparison to the Wallace tree. However, it 

demonstrates significant advantages in optimizing the performance of small-scale multipliers. 

 

 

 

Figure 5: The structure of first-order ZM 

tree.  
Figure 6: Delay for fourth-order ZM tree, Wallace 

tree, and ripple chain. 

2.4. OS tree 

Mou and Jutand invented an 'Overturned Stairs' tree, which has a regular and compact layout 

resulting from their recursive structure [7]. Taking a first-order OS tree shown in figure 7 as an 

example, it is divided into a subject and a root, and the subject can be constructed recursively. A 

first-order OS tree can add N operands in 𝑂((2𝑁)
1

2) time, requiring 3 TLWs. By connecting 

first-order OS Trees through a linear structure, one can derive higher-order OS Tree. The figure 8 

shows the structures of second-order OS tree multiplier. 

 

 

 

Figure 7: The structure of first-order OS tree.  Figure 8: The structure of second-order OS tree. 

In the study shown in table 2 conducted by Mou and Jutand, it was observed that, compared with 

4-2 tree, second-order and third-order OS tree have excellent performance. In addition, combining 

OS tree of different orders with ZM tree can achieve better performance. Higher order ZM tree 

perform poorly. 
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Table 2: The maximum number of operands that can be added by trees of height n. 

n ZM OS1 ZM2 OS1-ZM OS2 OS2-ZM OS3 4-2 Wallace 

1 3 3       3 

2 4 4      4 4 

3 6 6       6 

4 8 9      8 9 

5 11 13 12      13 

6 14 18 16 19 19   16 19 

7 18 24 23 27 28    28 

8 22 31 30 38 41   32 42 

9 27 39 41 52 59 60 60  63 

10 32 48 52 70 83 87 88 64 94 

11 38 58 68 92 114 125 129  141 

12 44 69 84 119 153 177 188 128 211 

13 51 81 106 151 201 247 271  316 

14 58 94 128 189 259 339 385 256 474 

2.5. Comparison of different tree structures 

The iterative CSA array and the Dadda tree represent two extremes in the realm of arithmetic 

circuits. The former is characterized by its conventionality, albeit at the expense of speed; 

conversely, the latter offers superior speed but poses significant implementation challenges. Various 

other tree structures necessitate a delicate balance between operational velocity and chip area. ZM 

tree and OS tree sacrifice speed performance, require more latency and area. But their circuit 

structure is more regular, which is more conducive to the implementation of VLSI. 

The author compared various structures composed of CSA that compressed 18 partial products 

and focused on studying some key factors. Among them, the additional unbalanced path refers to 

the path that requires additional waiting time, which is related to the operation speed and hardware 

utilization efficiency of the multiplier. Cross unit connections are closely related to layout design, 

and the fewer the number, the more regular the layout. Simultaneously, the hardware resource 

consumption of these structures was calculated. The study shown in Table 3 found that in structures 

using CSA as the basic addition unit, the Wallace tree has the fastest speed but but its structure is 

the most irregular. The running speed of OS tree is faster than ZM tree of the same order, but it has 

more cross cell connections and is not as regular as ZM tree. If a 4-2 compressor is used as the basic 

addition unit, the delay of these structures will be reduced. However, considering the structure of 

the 4-2 compressor itself, the delay of the tree structure has not been significantly improved. It is 

worth noting that the impact of cross cell wiring on the area is limited, as the wiring can often be 

placed on top of the device. The number of basic addition units and their own structural size have 

the greatest impact on the area. Therefore, based on the data in Table 3, the ZM tree uses more 

CSAs, which means a larger area. The OS tree improves the regularity of the Wallace tree structure 

without affecting the area. 

Table 3: The comparison between typical structure. 

Tree Structure Delay 
Additional 

unbalanced paths 

Cross unit 

connections 

Hardware resource 

consumption 

Linear arrays 16*(CSA) 0 0 16*(CSA) 

Wallace tree 6*(CSA) 0 5 16*(CSA) 
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First-order ZM 

tree 
8*(CSA) 2 2 18*(CSA) 

First-order OS 

tree 
6*(CSA) 1 3 16*(CSA) 

3. Optimization and Analysis of Tree Structure 

3.1. Challenge 

The Wallace tree multiplier is renowned for its exceptional speed. However, an examination of the 

circuit architecture of carry-save adder reveals that the delay introduced by XOR gates is 

significantly greater, resulting in a longer delay for the SUM output compared to that of the 

CARRY output. Furthermore, the process by which the carry-save adder compresses three input bits 

into two is inherently unbalanced. This imbalance contributes to the irregular structure of Wallace 

tree multipliers, which are predicated on CSA, thereby rendering them susceptible to issues such as 

clock skew and constraining their applicability in VLSI environments. Designing a basic unit with 

good performance is challenging. 

Researchers have sought to enhance performance of multipliers through several avenues: 

refining the Booth algorithm, exploring alternative algorithms, designing circuits with superior 

performance characteristics, or optimizing the adder configurations utilized in the final summation 

of multipliers. The challenge lies in designing a regular circuit structure that makes the multiplier 

easy to implement, while also having good speed performance and a smaller area. 

3.2. Researches on Optimization 

The conventional 3-2 compressor is characterized by a delay of two XOR gates along its critical 

path. Veeramachaneni has refined the architecture of the 3-2 compressor, thereby reducing the time 

required for transistor switching along the critical path [8]. Specifically, Veeramachaneni 

substitutes the first XOR gate with an XOR-XNOR configuration and replaces the second XOR 

gate with a MUX. In contrast, the traditional 4-2 compressor comprises two CSAs and exhibits a 

delay corresponding to four XOR gates along its critical path. The research conducted by Hsiao et 

al. has optimized the structure of the 4-2 compressor, resulting in a reduction of its delay to that 

equivalent to three XOR gates [9]. Similar to the 3-2 compressor, Veeramachaneni employs 

XOR-XNOR and XOR techniques to enhance the structural efficiency of the 4-2 compressor, 

resulting in a reduction of the critical path delay to two MUX and one XOR gate. Likewise, the 

architecture of the 5-2 compressor can be optimized using the same methodology, yielding a critical 

path delay of three multiplexers and one XOR gate. Some scholars have designed and optimized 

compressors with high compression ratios, which exhibit superior performance characteristics. 

Rouholamini refined the architecture of the conventional 7-2 compressor, resulting in a reduction of 

the critical path delay from seven XOR gates to six, thereby achieving enhanced operational speed 

[10]. 

Table 4: The comparison between different compressor. 

Partial products Compressors Hardware resource consumption Delay 

17 

3*(7-2) 30*(XOR)+15*(MUX) 12 

5*(5-2) 30*(XOR)+10*(MUX)+10*(additional logic circuits) 12 

7*(4-2)+1*(3-2) 30*(XOR)+15*(MUX) 11 

13*(3-2)+1*(4-2) 30*(XOR)+15*(MUX) 11 

Table 3: (continued). 
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22 

4*(7-2) 40*(XOR)+20*(MUX) 12 

6*(5-2)+1*(4-2) 40*(XOR)+14*(MUX)+12*(additional logic circuits) 11 

10*(4-2) 40*(XOR)+20*(MUX) 12 

17*(3-2)+1*(5-2) 40*(XOR)+19*(MUX)+2*(additional logic circuits) 12 

18*(3-2)+1*(4-2) 40*(XOR)+20*(MUX) 13 

The author compared the hardware resource consumption and delay of structures that compress 

17 partial products and 22 partial products using different compressors. For ease of comparison, it is 

assumed that a 3-2 compressor consists of 2 XORs and 1 MUX, with a delay of 2 XORs. A 4-2 

compressor consists of 4 XORs and 2 MUXes, with a delay of 3 XORs. A 5-2 compressor consists 

of 6 XORs, 2 MUXes, and 2 additional logic circuits with a delay of 4 XORs. A 7-2 compressor 

consists of 10 XORs and 5 MUXes, with a delay of 6 XORs. The research shown in table 4 above 

shows that various compressors seem unable to reduce hardware resource consumption. Note that 

the delay here is in XOR units. When the number of partial products is appropriate, mixing 

compressors with different compression ratios can bring advantages. 

Numerous scholars choose to use a mixture of compressors with different compression ratios to 

optimize the Wallace tree structure for instance, Shangshang Yao designed a Wallace tree structure 

that utilizes a combination of 3-2, 4-2, and 5-2 compressors to compress 13 partial products [11]. In 

this structure, the first stage uses four 4-2 compressors, the second stage uses two 3-2 compressors, 

and the third stage uses one 5-2 compressor. The number of XOR gates is 23, the number of binary 

data selectors is 11, the compression level is 3, and the delay is 9 XORs. Compared with traditional 

Wallace tree, its critical path delay is significantly reduced. Zhongmin Zhao integrated CSAs and 

4-2 compressors to compress 18 partial products when designing the Wallace tree structure [12]. 

The first stage uses CSA, the second stage uses 4-2 compressors, the third stage uses CSA, and the 

fourth stage uses 4-2 compressors. This structure is relatively complex, but it can effectively utilize 

hardware resources and improve summation efficiency. Its relatively regular structure avoids the 

imbalance of delay. 

Dunshan Yu proposed a new structure for delay balanced tree [13]. Dunshan Yu first points out 

that the TLW between subtrees cannot accurately indicate the complexity of connecting lines, as the 

TLW of the first-order ZM tree and OS tree composed of 4-2 adders are both 2. Dunshan Yu 

proposed using the TLWT (Trans Layer Wires of Tree) of the entire tree to measure the complexity 

of connections. The calculation method is as follows. 

 TLWT = ∑ 𝑇𝐿𝑊𝑖 × 𝐵𝐶𝑖
𝑛−1

𝑖=1
 (1) 

In the formula, n is the number of subtree, TLW is the number of connecting lines between 

adjacent subtrees, and BC is the minimum number of 4-2 compressors in adjacent subtrees. The 

TLWT of the OS tree is 12, and the TLWT of the ZM tree is 10. And the TLWT of the Wallace tree 

that completes 32-bit addition is 34. Therefore, TLWT can effectively demonstrate the complexity 

of connections in various trees. Dunshan Yu proposed a tree with a width of 2 and a structure as 

shown in the figure 9. Its TLWT is 8, which is lower than ZM tree and OS tree, and its regularity is 

also better. 

Table 4: (continued). 
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Figure 9: Proposed structure of tree multiplier. 

Ykuntam et al. have chosen to utilize parallel prefix adders (PPAs) to combine the partial 

products of the last row with the sum from the preceding stage [14]. Table 5 below shows their 

analysis of fast Wallace tree multipliers designed with various PPAs, including Kogge-Stone adder, 

Sklansky adder, Brent-kung adder, Ladner-Fischer adder, and Han-Carlson adder. The analysis 

reveals that these configurations attain a reduction in latency without substantially augmenting the 

area. Among them, Kogge-Stone adder used more resources and occupied more area, but achieved 

faster speed. In contrast, Brent-kung used less area but also achieved satisfactory speed. In 

conclusion, the utilization of PPAs in Wallace tree multipliers presents a viable strategy for 

optimizing both speed and area, and the choice of PPA should be guided by a thorough 

understanding of the trade-offs involved. 

Table 5: The comparison between different compressor. 

Input size Multiplier structure Area(No. of LUTs) Delay(ns) 

16-bit 

Traditional Wallace tree multiplier 590 36.7 

Wallace tree multiplier using 

Kogge-Stone adder 
634 29.44 

Wallace tree multiplier using 

Sklansky adder 
599 30 

Wallace tree multiplier using 

Brent-kung adder 
598 32.37 

Wallace tree multiplier using  

Ladner-Fischer adder 
596 31.57 

Wallace tree multiplier using 

Han-Carlson adder 
601 30.19 

4. Conclusion 

This article introduces various typical tree multiplier structures and their performance, and 

compares them. It was found that the Dadda tree has the best speed performance but is difficult to 

implement due to its irregular circuit structure and require a large area, while the delay balanced 

tree circuit is regular and easy to implement but sacrifices speed performance. Among them, the 

ZM tree has a higher delay but has advantages in small-scale multipliers. The performance of 
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higher-order OS tree is closer to that of Wallace tree. Over the years, many scholars have optimized 

the structure of compressors, designed novel multiplier addition array structures, and used better 

performing adders to achieve final summation, overall optimizing the speed and area performance 

of tree multipliers. The optimization strategies discussed in this article are not exhaustive; in fact, 

numerous other methods exist to enhance the performance of multipliers, such as refining the Booth 

algorithm, which is instrumental in generating partial products. The focus of multiplier optimization 

varies significantly depending on the specific applications of the microprocessor. By integrating the 

demands for microprocessors with varying performance characteristics within the IC industry or 

other industry, and subsequently analyzing and contrasting the optimization strategies for 

multipliers, the discourse will acquire enhanced persuasiveness and practical applicability. 
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