

Systematic Analysis on Performance Optimization of Tree
Multipliers

Haoran Yu1,a,*

1School of Electronic Information Engineering, Anhui University, Hefei, China

a. P12214186@stu.adu.edu.cn

*corresponding author

Abstract: The microprocessor chip is the core technology of the computer industry, and the

multiplier is an important computing unit of the microprocessor. Its computing speed and

area performances determine the performance of the microprocessor, and its structure

determines whether it is easy to implement. Tree multipliers are widely used due to their

superior performance. This article analyzes and compares the performance of several

typical tree structures, including Wallace tree, Dadda tree, ZM tree, and OS tree, and

compares various performance optimization methods, such as optimizing compressor

structure, optimizing tree structure, and using PPA. This article found that the Wallace tree

and Dadda tree have the fastest speed, but their irregular structures are not conducive to

implementation. ZM tree and OS tree are two types of delay balancing trees with regular

structures, but sacrifice speed and area performances. The optimization of compressor

structure and tree structure, as well as the use of PPA, have reduced latency, but may lead to

an increase in area. This article summarizes the current development of tree multipliers and

has high reference value in future research.

Keywords: Microprocessor, Tree multiplier, Performance optimization.

1. Introduction

The design of microprocessor chips is one of the core technologies in the entire computer industry,

and the performance of microprocessors is constantly improving at an astonishing speed, which is

driving the rapid development of the entire information industry. The multiplier is an important

computing unit in microprocessors, serving as the core of real-time image processing and digital

signal processing. Its computing speed determines the speed of the microprocessor. Its area affects

the size of the microprocessor. The characteristics of its structure determine whether it is easy to

implement in VLSI. That's why optimizing the speed, area, and structure of the multiplier is crucial

for the overall performance of the microprocessor. Wallace first proposed and designed the tree

multiplier structure in 1964 [1]. Several scholars proposed other typical tree multiplier structures,

which have different advantages in speed and area. Many scholars have optimized these structures

from multiple perspectives and achieved excellent performance.

This paper begins with an introduction to the fundamental principles and classifications of tree

multipliers, including common structures such as Wallace tree and Dadda tree. Subsequently, this

review delves into the diverse performance optimization strategies posited within extant literature,

including the design of novel compressors, the refinement of tree structures, and the implementation

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/127/2025.20275

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

7

of more advanced adders for the final summation. The paper concludes by summarizing the current

development in the field, providing a valuable reference for subsequent studies.

2. Analysis of typical tree structures

2.1. Wallace tree

Wallace noted that while it is possible to add two or more numbers within a single adder, the

growth in logical complexity is not proportional to the increase in speed, making it an impractical

solution. A novel approach involves utilizing a pseudo adder, which can add three numbers together

but yields two outputs instead of one. This reduces the number of remaining digits to be added,

hence the term ‘3-2 Compressor’ or ‘Carry Save Adder (CSA)’. Since it can operate along its digital

stages without carry propagation, it operates faster than traditional adders.

Furthermore, Wallace highlighted that employing multiple pseudo adders for parallel operation

can decrease the number of digits by 1.5 times. By achieving a significant enhancement in

computational speed while avoiding an increase in hardware costs, it also simplifies the control

circuitry. Wallace employed this methodology in the design of tree-structured multipliers.

The Wallace tree multiplier comprises three phases. The initial phase involves the formation of a

partial product matrix. The second phase entails the reduction of the height of this partial product

matrix to two through parallel operations. The final phase employs a carry-propagate adder to

combine the two rows. Figure 1 below shows the addition tree as designed in the Wallace tree

architecture. Figure 2 shows dot diagram for an 8 by 8 Dadda multiplier.

Figure 1: Wallace tree structure using CSA

capable of summing up 18 partial products.
 Figure 2: Dot diagram for an 8 by 8 Dadda

multiplier.

2.2. Dadda tree

Dadda introduced an alternative classical structure for parallel multipliers [2]. In the design, Dadda

replaces Wallace's pseudo-adder with ‘parallel (m, n) counters’. These counters are characterized by

having ‘m’ inputs and ‘n’ outputs, where ‘m’ is less than or equal to ‘n’. The binary value

represented by the ‘m’ outputs corresponds to the count of ‘1’s present among the ‘n’ inputs. The

Dadda tree multiplier, akin to the Wallace tree multiplier, operates through three distinct stages;

however, Dadda's approach employs the minimal number of (3, 2) and (2, 2) counters at each level

during the partial product reduction phase. Dadda invented the dot diagram, and the figure 2 above

shows the 8 by 8 multiplier designed by Dadda. This multiplier requires four reduction levels, with

matrix heights of 6, 4, 3, and 2, respectively The points connected diagonally in the figure represent

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/127/2025.20275

8

the output of the (3,2) counter. The two points connected by cross diagonals represent the output of

the (2,2) counter. A total of 64 AND gates, 35 (3,2) counters, 7 (2,2) counters, and a 14 bit carry

propagation adder are required to form a 16-bit product.

Dadda further hypothesized that counters of varying dimensions could be feasibly implemented.

The 4-2 compressor has excellent characteristics, including outstanding balance and symmetry.

Related studies have shown that the multiplier composed of 4-2 compressors has good performance

[3]. It has been widely used as a fundamental element in tree multiplier architectures.

Habibi and Wintz believe that Dadda's method of placing counters is optimal [4]. Townsend's

research shown in table 1 also indicates that under the exclusive use of (3,2) and (2,2) counters,

Dadda tree multipliers exhibit reduced delay, suggesting a superior speed, along with a lower

complexity compared to Wallace tree multipliers [5].

Table 1: The comparison of delay and complexity between Dadda tree and Wallace tree.

Multiplier Size Dadda Delay Wallace Delay Dadda Complexity Wallace Complexity

4 by 4 19 21 104 104

8 by 8 37 42 528 552

16 by 16 69 77 2336 2476

32 by 32 133 145 9792 10283

2.3. ZM tree

Zuras and McAllister proposed a method for constructing balanced delay trees, which has a better

area-time product than binary tree [6]. Figure 3 shows the structure of ripple chain.

Figure 3: The structure of ripple chain.

The number represent the accumulated gate delay. Zuras and McAllister decomposed the ripple

chain into sub-chains and then serially combined the results of these sub-chains. This structure

shown in figure 4 introduces limited additional layout complexity but offers substantial

acceleration.

Figure 4: Second-order balanced delay tree.

When the total delay of the up chain equals that of the down chain, a delay balance is achieved.

If 64 inputs are to be combined to produce a single result, this structure, utilizing 2 wires, would

incur 11 delays. The ripple circuit, despite having only one wire, would incur 63 delays. A binary

tree, with only 6 delays, necessitates 6 wires. Zuras and McAllister demonstrated that a k-order ZM

tree can accomplish the tasks of a 2k-order binary tree, albeit with higher latency, yet it saves nearly

half of the area.

Its structure is very regular and requires very few macro modules, making it highly valuable for

use. The figure 5 shows the ZM tree multiplier structure. In the research shown in figure 6

conducted by Zuras and McAllister, it was observed that the delay performance of the fourth-order

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/127/2025.20275

9

balanced delay tree gradually deteriorates in comparison to the Wallace tree. However, it

demonstrates significant advantages in optimizing the performance of small-scale multipliers.

Figure 5: The structure of first-order ZM

tree.
Figure 6: Delay for fourth-order ZM tree, Wallace

tree, and ripple chain.

2.4. OS tree

Mou and Jutand invented an 'Overturned Stairs' tree, which has a regular and compact layout

resulting from their recursive structure [7]. Taking a first-order OS tree shown in figure 7 as an

example, it is divided into a subject and a root, and the subject can be constructed recursively. A

first-order OS tree can add N operands in 𝑂((2𝑁)
1

2) time, requiring 3 TLWs. By connecting

first-order OS Trees through a linear structure, one can derive higher-order OS Tree. The figure 8

shows the structures of second-order OS tree multiplier.

Figure 7: The structure of first-order OS tree. Figure 8: The structure of second-order OS tree.

In the study shown in table 2 conducted by Mou and Jutand, it was observed that, compared with

4-2 tree, second-order and third-order OS tree have excellent performance. In addition, combining

OS tree of different orders with ZM tree can achieve better performance. Higher order ZM tree

perform poorly.

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

DOI: 10.54254/2755-2721/127/2025.20275

10

Table 2: The maximum number of operands that can be added by trees of height n.

n ZM OS1 ZM2 OS1-ZM OS2 OS2-ZM OS3 4-2 Wallace

1 3 3 3

2 4 4 4 4

3 6 6 6

4 8 9 8 9

5 11 13 12 13

6 14 18 16 19 19 16 19

7 18 24 23 27 28 28

8 22 31 30 38 41 32 42

9 27 39 41 52 59 60 60 63

10 32 48 52 70 83 87 88 64 94

11 38 58 68 92 114 125 129 141

12 44 69 84 119 153 177 188 128 211

13 51 81 106 151 201 247 271 316

14 58 94 128 189 259 339 385 256 474

2.5. Comparison of different tree structures

The iterative CSA array and the Dadda tree represent two extremes in the realm of arithmetic

circuits. The former is characterized by its conventionality, albeit at the expense of speed;

conversely, the latter offers superior speed but poses significant implementation challenges. Various

other tree structures necessitate a delicate balance between operational velocity and chip area. ZM

tree and OS tree sacrifice speed performance, require more latency and area. But their circuit

structure is more regular, which is more conducive to the implementation of VLSI.

The author compared various structures composed of CSA that compressed 18 partial products

and focused on studying some key factors. Among them, the additional unbalanced path refers to

the path that requires additional waiting time, which is related to the operation speed and hardware

utilization efficiency of the multiplier. Cross unit connections are closely related to layout design,

and the fewer the number, the more regular the layout. Simultaneously, the hardware resource

consumption of these structures was calculated. The study shown in Table 3 found that in structures

using CSA as the basic addition unit, the Wallace tree has the fastest speed but but its structure is

the most irregular. The running speed of OS tree is faster than ZM tree of the same order, but it has

more cross cell connections and is not as regular as ZM tree. If a 4-2 compressor is used as the basic

addition unit, the delay of these structures will be reduced. However, considering the structure of

the 4-2 compressor itself, the delay of the tree structure has not been significantly improved. It is

worth noting that the impact of cross cell wiring on the area is limited, as the wiring can often be

placed on top of the device. The number of basic addition units and their own structural size have

the greatest impact on the area. Therefore, based on the data in Table 3, the ZM tree uses more

CSAs, which means a larger area. The OS tree improves the regularity of the Wallace tree structure

without affecting the area.

Table 3: The comparison between typical structure.

Tree Structure Delay
Additional

unbalanced paths

Cross unit

connections

Hardware resource

consumption

Linear arrays 16*(CSA) 0 0 16*(CSA)

Wallace tree 6*(CSA) 0 5 16*(CSA)

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

DOI: 10.54254/2755-2721/127/2025.20275

11

First-order ZM

tree
8*(CSA) 2 2 18*(CSA)

First-order OS

tree
6*(CSA) 1 3 16*(CSA)

3. Optimization and Analysis of Tree Structure

3.1. Challenge

The Wallace tree multiplier is renowned for its exceptional speed. However, an examination of the

circuit architecture of carry-save adder reveals that the delay introduced by XOR gates is

significantly greater, resulting in a longer delay for the SUM output compared to that of the

CARRY output. Furthermore, the process by which the carry-save adder compresses three input bits

into two is inherently unbalanced. This imbalance contributes to the irregular structure of Wallace

tree multipliers, which are predicated on CSA, thereby rendering them susceptible to issues such as

clock skew and constraining their applicability in VLSI environments. Designing a basic unit with

good performance is challenging.

Researchers have sought to enhance performance of multipliers through several avenues:

refining the Booth algorithm, exploring alternative algorithms, designing circuits with superior

performance characteristics, or optimizing the adder configurations utilized in the final summation

of multipliers. The challenge lies in designing a regular circuit structure that makes the multiplier

easy to implement, while also having good speed performance and a smaller area.

3.2. Researches on Optimization

The conventional 3-2 compressor is characterized by a delay of two XOR gates along its critical

path. Veeramachaneni has refined the architecture of the 3-2 compressor, thereby reducing the time

required for transistor switching along the critical path [8]. Specifically, Veeramachaneni

substitutes the first XOR gate with an XOR-XNOR configuration and replaces the second XOR

gate with a MUX. In contrast, the traditional 4-2 compressor comprises two CSAs and exhibits a

delay corresponding to four XOR gates along its critical path. The research conducted by Hsiao et

al. has optimized the structure of the 4-2 compressor, resulting in a reduction of its delay to that

equivalent to three XOR gates [9]. Similar to the 3-2 compressor, Veeramachaneni employs

XOR-XNOR and XOR techniques to enhance the structural efficiency of the 4-2 compressor,

resulting in a reduction of the critical path delay to two MUX and one XOR gate. Likewise, the

architecture of the 5-2 compressor can be optimized using the same methodology, yielding a critical

path delay of three multiplexers and one XOR gate. Some scholars have designed and optimized

compressors with high compression ratios, which exhibit superior performance characteristics.

Rouholamini refined the architecture of the conventional 7-2 compressor, resulting in a reduction of

the critical path delay from seven XOR gates to six, thereby achieving enhanced operational speed

[10].

Table 4: The comparison between different compressor.

Partial products Compressors Hardware resource consumption Delay

17

3*(7-2) 30*(XOR)+15*(MUX) 12

5*(5-2) 30*(XOR)+10*(MUX)+10*(additional logic circuits) 12

7*(4-2)+1*(3-2) 30*(XOR)+15*(MUX) 11

13*(3-2)+1*(4-2) 30*(XOR)+15*(MUX) 11

Table 3: (continued).

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

DOI: 10.54254/2755-2721/127/2025.20275

12

22

4*(7-2) 40*(XOR)+20*(MUX) 12

6*(5-2)+1*(4-2) 40*(XOR)+14*(MUX)+12*(additional logic circuits) 11

10*(4-2) 40*(XOR)+20*(MUX) 12

17*(3-2)+1*(5-2) 40*(XOR)+19*(MUX)+2*(additional logic circuits) 12

18*(3-2)+1*(4-2) 40*(XOR)+20*(MUX) 13

The author compared the hardware resource consumption and delay of structures that compress

17 partial products and 22 partial products using different compressors. For ease of comparison, it is

assumed that a 3-2 compressor consists of 2 XORs and 1 MUX, with a delay of 2 XORs. A 4-2

compressor consists of 4 XORs and 2 MUXes, with a delay of 3 XORs. A 5-2 compressor consists

of 6 XORs, 2 MUXes, and 2 additional logic circuits with a delay of 4 XORs. A 7-2 compressor

consists of 10 XORs and 5 MUXes, with a delay of 6 XORs. The research shown in table 4 above

shows that various compressors seem unable to reduce hardware resource consumption. Note that

the delay here is in XOR units. When the number of partial products is appropriate, mixing

compressors with different compression ratios can bring advantages.

Numerous scholars choose to use a mixture of compressors with different compression ratios to

optimize the Wallace tree structure for instance, Shangshang Yao designed a Wallace tree structure

that utilizes a combination of 3-2, 4-2, and 5-2 compressors to compress 13 partial products [11]. In

this structure, the first stage uses four 4-2 compressors, the second stage uses two 3-2 compressors,

and the third stage uses one 5-2 compressor. The number of XOR gates is 23, the number of binary

data selectors is 11, the compression level is 3, and the delay is 9 XORs. Compared with traditional

Wallace tree, its critical path delay is significantly reduced. Zhongmin Zhao integrated CSAs and

4-2 compressors to compress 18 partial products when designing the Wallace tree structure [12].

The first stage uses CSA, the second stage uses 4-2 compressors, the third stage uses CSA, and the

fourth stage uses 4-2 compressors. This structure is relatively complex, but it can effectively utilize

hardware resources and improve summation efficiency. Its relatively regular structure avoids the

imbalance of delay.

Dunshan Yu proposed a new structure for delay balanced tree [13]. Dunshan Yu first points out

that the TLW between subtrees cannot accurately indicate the complexity of connecting lines, as the

TLW of the first-order ZM tree and OS tree composed of 4-2 adders are both 2. Dunshan Yu

proposed using the TLWT (Trans Layer Wires of Tree) of the entire tree to measure the complexity

of connections. The calculation method is as follows.

 TLWT = ∑ 𝑇𝐿𝑊𝑖 × 𝐵𝐶𝑖
𝑛−1

𝑖=1
 (1)

In the formula, n is the number of subtree, TLW is the number of connecting lines between

adjacent subtrees, and BC is the minimum number of 4-2 compressors in adjacent subtrees. The

TLWT of the OS tree is 12, and the TLWT of the ZM tree is 10. And the TLWT of the Wallace tree

that completes 32-bit addition is 34. Therefore, TLWT can effectively demonstrate the complexity

of connections in various trees. Dunshan Yu proposed a tree with a width of 2 and a structure as

shown in the figure 9. Its TLWT is 8, which is lower than ZM tree and OS tree, and its regularity is

also better.

Table 4: (continued).

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering
DOI: 10.54254/2755-2721/127/2025.20275

13

Figure 9: Proposed structure of tree multiplier.

Ykuntam et al. have chosen to utilize parallel prefix adders (PPAs) to combine the partial

products of the last row with the sum from the preceding stage [14]. Table 5 below shows their

analysis of fast Wallace tree multipliers designed with various PPAs, including Kogge-Stone adder,

Sklansky adder, Brent-kung adder, Ladner-Fischer adder, and Han-Carlson adder. The analysis

reveals that these configurations attain a reduction in latency without substantially augmenting the

area. Among them, Kogge-Stone adder used more resources and occupied more area, but achieved

faster speed. In contrast, Brent-kung used less area but also achieved satisfactory speed. In

conclusion, the utilization of PPAs in Wallace tree multipliers presents a viable strategy for

optimizing both speed and area, and the choice of PPA should be guided by a thorough

understanding of the trade-offs involved.

Table 5: The comparison between different compressor.

Input size Multiplier structure Area(No. of LUTs) Delay(ns)

16-bit

Traditional Wallace tree multiplier 590 36.7

Wallace tree multiplier using

Kogge-Stone adder
634 29.44

Wallace tree multiplier using

Sklansky adder
599 30

Wallace tree multiplier using

Brent-kung adder
598 32.37

Wallace tree multiplier using

Ladner-Fischer adder
596 31.57

Wallace tree multiplier using

Han-Carlson adder
601 30.19

4. Conclusion

This article introduces various typical tree multiplier structures and their performance, and

compares them. It was found that the Dadda tree has the best speed performance but is difficult to

implement due to its irregular circuit structure and require a large area, while the delay balanced

tree circuit is regular and easy to implement but sacrifices speed performance. Among them, the

ZM tree has a higher delay but has advantages in small-scale multipliers. The performance of

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

DOI: 10.54254/2755-2721/127/2025.20275

14

higher-order OS tree is closer to that of Wallace tree. Over the years, many scholars have optimized

the structure of compressors, designed novel multiplier addition array structures, and used better

performing adders to achieve final summation, overall optimizing the speed and area performance

of tree multipliers. The optimization strategies discussed in this article are not exhaustive; in fact,

numerous other methods exist to enhance the performance of multipliers, such as refining the Booth

algorithm, which is instrumental in generating partial products. The focus of multiplier optimization

varies significantly depending on the specific applications of the microprocessor. By integrating the

demands for microprocessors with varying performance characteristics within the IC industry or

other industry, and subsequently analyzing and contrasting the optimization strategies for

multipliers, the discourse will acquire enhanced persuasiveness and practical applicability.

References

[1] Wallace C S. A suggestion for a fast multiplier. IEEE Transactions on electronic Computers, 1964 (1): 14-17.

[2] Dadda L. Some schemes for parallel multipliers. IEEE Computer Society Press, 1990.

[3] Jessani R M, Putrino M. Comparison of single-and dual-pass multiply-add fused floating-point units. IEEE

Transactions on Computers, 1998, 47(9): 927-937.

[4] Habibi A, Wintz P A. Fast multipliers. IEEE Transactions on Computers, 1970, 100(2): 153-157.

[5] Townsend W J, Swartzlander Jr E E, Abraham J A. A comparison of Dadda and Wallace multiplier delays.

Advanced signal processing algorithms, architectures, and implementations XIII. SPIE, 2003, 5205: 552-560.

[6] Zuras D, McAllister W H. Balanced delay trees and combinatorial division in VLSI. IEEE journal of solid-state

circuits, 1986, 21(5): 814-819.

[7] Mou Z J, Jutand F. A class of close-to-optimum adder trees allowing regular and compact layout. Proceedings.,

1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors. IEEE, 1990:

251-254.

[8] Veeramachaneni S, Krishna K M, Avinash L, et al. Novel architectures for high-speed and low-power 3-2, 4-2 and

5-2 compressors. 20th International Conference on VLSI Design held jointly with 6th International Conference on

Embedded Systems (VLSID'07). IEEE, 2007: 324-329.

[9] Hsiao S F, Jiang M R, Yeh J S. Design of high-speed low-power 3-2 counter and 4-2 compressor for fast

multipliers. Electronics Letters, 1998, 34(4): 341-342.

[10] Rouholamini M, Kavehie O, Mirbaha A P, et al. A new design for 7: 2 compressors. 2007 IEEE/ACS International

Conference on Computer Systems and Applications. IEEE, 2007: 474-478.

[11] Shangshang Y, Li S. Design of a New Floating Point Multiplier Based on Hybrid Compression Structure.

Microelectronics and Computer, 2021, 38 (09): 74-78.

[12] Zhongmin Z. Design and Implementation of Multiplier Unit in 64 bit High Performance Embedded CPU. Tongji

University, 2007

[13] Dunsha Y, Xubang S. Design of 32-bit fixed/floating point multiplier. Journal of Semiconductors, 2001, (01):

91-95

[14] Ykuntam Y, Pavani K, Saladi K. Design and analysis of High speed wallace tree multiplier using parallel prefix

adders for VLSI circuit designs. 2020 11th international conference on computing, communication and

networking technologies (ICCCNT). IEEE, 2020: 1-6.

Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

DOI: 10.54254/2755-2721/127/2025.20275

15

