

SecureCoder: A Framework for Mitigating Vulnerabilities in
Automated Code Generation Using Large Language Models

Ruichen Zhu1,a,*

1Berkshire School, MA, USA

a. rzhu25@berkshireschool.org

*corresponding author

Abstract: In recent years, the proliferation of code generation models based on large language

models such as GitHub Copilot and ChatGPT allows automated source code generation to

meet the needs of developers and helps increase coding efficiency. However, a recent study

revealed security concerns in generated code, leading the code to be vulnerable to attacks.

My research introduces a framework aimed at mitigating the risk of code generation models

generating vulnerable code specific to data leakage issues. The ranker is developed to use

VUDENC, a deep learning model for vulnerability detection, along with CodeQL and Bandit,

two Python code analyzers, to evaluate and rank generated code based on security metrics.

By generating multiple code candidates and utilizing the ranker to select the most secure

option, it ensures the generation of more secure code. The framework is evaluated on an

aggregated SecurityEval and LLMSecEval dataset on relevant scenarios, which shows the

framework has newfound advantages compared to the gpt3.5-turbo model. With its proven

effectiveness, the framework could be expanding its applicability beyond data leakage issues,

adapting to mitigate a comprehensive range of vulnerabilities.

Keywords: SecureCoder, LLM-based Code Generation, Data Leakage Mitigation,

Vulnerability Detection Ranker, Cybersecurity.

1. Introduction

Code generation is a process where a model takes users’ natural language input and generates a code

snippet to satisfy the required functionalities. The recent year saw the emergence of new large

language code generation models such as GitHub Copilot [1] and ChatGPT [2] that are good at

generating functional code. These code generation tools are also being used much more frequently,

with an estimated market of 180 million dollars in 2032[3]. Many users rely on these models like

GitHub Copilot [4], and more focus should be put on code generation models.

Meanwhile, code security in the age of generative AI is attracting increasing attention. In the 2023

year alone, over three hundred million victims’ data records [5] were leaked to the public. Most of

such data leakage was caused by cyberattacks on vulnerable systems [6], especially in the field of

healthcare and financial services [5], the two largest targets of data compromises where user data and

privacy are critical.

Therefore, even though these code generation models are convenient and can significantly boost

developers’ coding efficiency, they raise severe security issues. According to a survey done on

GitHub Copilot, a code generation model developed by GitHub and OpenAI, 40% of the generated

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

128

code is vulnerable to cyberattacks [7]. Such a gap in code security has motivated the work of secure

code generation via language models.

In the past years, many related research has been studied on the topic of code security. For example,

MITRE’s CWE [6], or common weakness enumeration, is a widely used vulnerability identification

dataset to quantify code security. It includes over 600+ categories of different vulnerabilities, each

with a unique ID. Pearce et al.[7] tested the generated code by Github Copoit on the top 25 CWE

weaknesses, and found that about 40% of the code is vulnerable to corresponding CWE. Siddiq et al.

proposed a Security Evaluations Dataset [8] with natural language prompts that can be used to assess

the security of any code-generation model.

Some works try to leverage large language models to boost code accuracy instead of code security.

For instance, Ni et al. [9] have used a re-ranking mechanism for multiple code candidates to achieve

more accurate code generation.

In this project, I proposed a SecureCoder, a framework to generate cyberattack-safe code snippets

via large language models (LLMs). SecureCoder is a hierarchical structure. First, it generates multiple

samples of code based on users’ inputs through the same LLM. The motivation behind this is that, as

previous work found [10], when code generation code is drawn at a large scale, it is more likely to

include a correct and, in this case, a more secure solution. The second step is then ranking the

generated multiple code snippets using a ranker, which consists of VUDENC, a vulnerability

detection deep learning model, CodeQL, a code analysis engine, and Bandit, a Python vulnerability

detector. All the code samples that are marked vulnerable by the ranker are refined by regenerating

from the LLM using the vulnerability description from the ranker. Finally, all the code samples will

be ranked again and the top result will be the final output. A comparison of SecureCoder is made

against three baselines (GPT3.5-turbo-0613, prompted GPT3.5-turbo-0613, and FRANC-like[11]) on

11 test cases from the aggregated SecurityEval[8] and LLMSecEval[12] dataset, and found that

SecureCoder outperformed them by 61.82%, 42.73% and 49.10% on data leakage problems,

respectively.

2. The proposed framework: the SecureCoder

The SecureCoder framework is shown in Figure. 1. It includes four components: 1) a code generation

LLM that is used to generate sample code snippets based on users’ natural language inputs, 2) a

sample generation module that calls the LLM, 3) a ranker that ranks the generated code samples based

on the detected vulnerability, and 4) a code refinement mechanism that calls the regeneration of code

samples and selects the final output. As explained above, the ranker and sample refinement are key

components in SecureCoder, and the details are explained below.

Figure 1: The SecureCoder framework.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

129

2.1. Ranker

The ranker consists of VUDENC, CodeQL, and Bandit. VUDENC is a deep learning neural network

that is trained to evaluate each code token’s vulnerability on a scale of 100. Tokens with a higher

score are generally more vulnerable, and tokens with a lower score are generally more secure.

CodeQL and Bandit are two different vulnerability analyzers that can scan for different patterns of

vulnerability and directly output the vulnerability description and the vulnerable lines. In the ranker,

the framework first ranks all the code samples by each sample’s vulnerability via CodeQL and Bandit

and then decides the secureness score by VUDENC’s average score over the entire sample.

2.1.1. Detector

We used the code vulnerability analyzers CodeQL and Bandit as the detectors. CodeQL is an industry-

leading vulnerability detection tool. It converts the source code into a CodeQL database and runs

CodeQL queries to identify patterns that match known vulnerabilities, allowing for a detailed

description of the security issue. Bandit is a Python vulnerability detection tool. Bandit scans the

Python source code for known vulnerabilities and identifies security problems. The final score of the

detector section would be a boolean evaluation of whether the code is vulnerable or not. Because of

the detector’s rule-based detection nature, the results are more reliable and therefore used to rank the

samples first.

2.1.2. VUDENC

VUDENC is a deep-learning model that focuses on Python code vulnerability detection. It uses an

LSTM network to classify vulnerabilities of each code token and generates a confidence level on each

token. The architecture of the model is the same as that used in [13]. Data are scrapped from GitHub

commits with relevant keywords like CWE IDs and vulnerability names to train the model. The

GitHub commits include the original code and the modified secure code, and both are used to let the

model learn to classify between secure code and vulnerable code. The model would read a source

code and classify each token’s vulnerability with a confidence score. The final VUDENC secureness

score would be an average of all the confidence scores. However, since VUDENC is a deep learning

approach, it cannot pinpoint a vulnerability, so the ranker ranks by VUDENC score after the detector

score.

2.2. Sample refinement for code regeneration

Even though large scales of outputs are drawn from the LLM, it is still possible that no secure samples

are generated. To tackle this situation, the GPT model chat feature is utilized to refine the code by

regenerating it using detector results. Whenever the detector detects a security issue, it will also output

supplementary information such as the name of the issue and a detailed description. The sample

refinement step is where such information is fed back to the LLM by creating a new dialogue using

the GPT chat model API. After the vulnerable code is regenerated, the ranker will re-rank the samples

and then select the top result as output.

2.3. VUDENC model Bootstrapping

The bootstrapping process is done on the VUDENC deep learning network to enhance its accuracy

in the detection of vulnerable code tokens. By employing the bootstrapping process, new samples of

secure and vulnerable code generated by Securecoder are then trained on the VUDENC model. From

Tony et al.’s dataset [12], scenarios in 1 are chosen to generate new training samples for VUDENC.

Vulnerable code samples, determined by the ranker and later secured by sample refinement, are

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

130

source codes used in the process. The changes in the code sample before and after the sample

refinement step are identified as the vulnerable and secure code pieces, respectively. All the new data

would be augmented back to the original dataset, and VUDENC would be retrained on this new

dataset.

Table 1: Scenarios for VUDENC bootstrapping

Scenario

CWE-89_SQI-1b

CWE-89_SQI-1c

CWE-89_SQI-3a

CWE-89_SQI-3b

CWE-502_DUD-1a

CWE-502_DUD-1c

CWE-502_DUD-2b

CWE-502_DUD-2c

CWE-502_DUD-3c

CWE-22_ILP-2a

CWE-22_ILP-2b

CWE-22_ILP-2c

CWE-22_ILP-3a

CWE-22_ILP-3b

CWE-22_ILP-3c

3. Experiments

3.1. Datasets

Experiments are conducted on selected scenarios from the SecurityEval dataset [8]. SecurityEval is a

dataset for natural language prompts of code docstring that could be used to assess the security of

code-generation models. This dataset is constructed based on insecure code examples from multiple

sources, like the CodeQL vulnerability example, the Sonar vulnerability documentation, and the work

of Pearce et al. [7]. Additional sets of scenarios are also taken from LLMSecEval by Tony et al. [12].

Their work of pure natural language prompts is adapted into docstring format for a more consistent

result.

I selected 11 scenarios that are related to the security issue of authentication and data leakage. The

scenarios are shown in Table 2.

Table 2: Scenarios in SecurityEval related to authentication security and data leakage

Scenario Source Description Vulnerability

CWE-022-

author-1

SecurityEval Web application of delete image Arbitrary file access

CWE-022-

author-2

SecurityEval Web application of parsing json

from url

urllib openurl schema allowing file://,

arbitrary file access

CWE-022-

codeql-1

SecurityEval Web application of getting file Arbitrary file access

CWE-022-

codeql-2

SecurityEval Web application of TAR file

extraction

Arbitrary file write

CWE-200-

author-1

SecurityEval Web application bank

authorization

SQL injection

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

131

CWE-425-

author-1

SecurityEval Web application create file from

user input

Arbitrary file write

CWE-

434_UUF-1c

LLMSecEval Web application of uploading a

pdf file

Arbitrary file write and file type check

CWE-

434_UUF-2b

LLMSecEval Web application of image upload

into a database

SQL injection

CWE-

434_UUF-3a

LLMSecEval Web application of file upload Arbitrary file write

CWE-522-

pearce-1

SecurityEval Web application register Sql injection

CWE-641-

sonar-1

SecurityEval Web application download Arbitrary file access

3.2. Results

3.2.1. Baselines

We compared SecureCoder against three baselines (GPT3.5-Turbo, prompted GPT3.5-Turbo, and

FRANC-like) on the generation of security code.

GPT3.5-Turbo: In this baseline, the GPT3.5-Turbo-0613 is directly to generate the code.

Prompted GPT3.5-Turbo: In this baseline, the same GPT3.5-Turbo-0613 is used with additional

prompts on security. The following instructions are added to the prompt:

“Generate only the complete source code with a focus on security, ensuring it is free from

vulnerabilities and adheres to best practices to prevent data leakage."

FRANC-like: FRANC is a lightweight framework for high-quality code generation [11]. It uses

bandit code analyzer and prompt engineering to fix security issues. I rebuilt this framework, therefore

called FRANC-like, in this paper with the following modules: sample code generation, bandit

analyzer, and the ranker.

10 repeated tests are done for each scenario across the four methods: SecureCoder with 10 numbers

of samples, GPT3.5-Turbo, prompted GPT3.5-Turbo, and FRANC-like with 10 numbers of samples.

Secure rates (the percent of tests where secure code is generated) are counted for each method. The

results are shown in Figure. 2.

Figure 2: The secure rates of SecureCoder against GPT3.5-Turbo and FRANC-like on 11 scenarios

in the SecurityEval dataset.

Table 2: (continued).

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

132

3.3. Ablation studies

3.3.1. The role of sample refinement

In this experiment, the sample refinement component is removed from SecureCoder. A decrease is

then observed in the secure rate, a 52.7% decrease in the overall secure rate shown in Figure. 4, with

4 test cases having a 0% secure rate. The reason is that the sample refinement step informs the LLM

of identified vulnerabilities so that LLM can better refine them in the newly generated code samples.

Without it, the model lacks specific guidance on security issues, leading to a 0% secure rate in

generating secure outputs. The sample refinement process ensures that the model is not only aware

of vulnerabilities but also equipped to address them effectively, thereby significantly contributing to

the overall effectiveness of SecureCoder.

Figure 3: The secure rates of SecureCoder against the removal of sample refinement on 8 scenarios

in the SecurityEval dataset.

3.3.2. The role of VUDENC

The VUDENC model in the ranker within the SecureCoder framework plays a role in enhancing the

overall security of the generated code. Trained on a vast amount of vulnerable code snippets, the deep

learning network develops the ability to recognize potential security flaws. While the rule-based

detectors offer a high degree of accuracy in pinpointing specific vulnerabilities, the deep learning

network adds an additional layer of sophistication by assessing the overall secureness of the code.

This additional analysis allows the ranker to rank code based on the secureness of the samples by

learning from the training data, which is helpful on top of the detector result. The results after

dropping VUDENC also verified this, as there is a 17.3% decrease in secure rate without VUDENC

shown in Figure. 4.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

133

Figure 4: The secure rates of SecureCoder against the removal of VUDENC on 8 scenarios in the

SecurityEval dataset.

3.3.3. The role of VUDENC bootstrapping

By bootstrapping the VUDENC model, additional training data could be generated by Securecoder

on related test cases. These generated codes are based on CWE examples and resulted in an overall

enhancement shown in Figure. 5.

Figure 5: The secure rates of SecureCoder with VUDENC bootstrapping and without.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

134

3.4. Discussion

The SecureCoder framework presents an advancement in addressing security vulnerabilities in large

language model powered code generation. The integration of a ranker, which utilizes both rule-based

detectors (CodeQL and Bandit) and a deep learning model (VUDENC), provides a robust mechanism

for assessing and improving the security of generated code.

In the evaluation, the GPT3.5-Turbo model achieved a 21.81% secure rate, the prompted GPT3.5-

Turbo model achieved a 40.91% secure rate, FRANE-like achieved a 34.55% secure rate, and

SecureCoder achieved an 83.64% secure rate. GPT3.5 has a low overall secure rate as it does not

consider the security aspect of its code when simply asked to generate a source code. The FRANCE-

like model also did not perform great as this is a rebuilt model from their paper, and their focus is

also on code quality in general and not specifically security. For any vulnerability that is not detected

by bandit, it performs similarly to the GPT3.5 model. Prompted GPT3.5 had been specifically asked

to take into consideration the security aspect, therefore performing much better than the previous

models. SecureCoder, not being prompted to take into consideration of code security, has shown the

highest secure rate of all models.

One key finding from the ablation studies is the critical role of sample refinement in the

SecureCoder framework. By incorporating feedback on identified vulnerabilities directly into the

code generation process, SecureCoder enhances its ability to produce secure code. This approach not

only addresses the immediate vulnerabilities but also guides the language model toward generating

inherently more secure code snippets.

Furthermore, the inclusion of VUDENC as part of the ranker underscores the importance of

leveraging advanced deep learning techniques in vulnerability detection. VUDENC’s capacity to

evaluate the overall security of code snippets complements the specific vulnerability detection offered

by CodeQL and Bandit, leading to a more comprehensive security assessment.

Additionally, by bootstrapping the VUDENC model with the output of Securecoder, an overall

enhancement is shown. The initial Securecoder framework provided the opportunity to generate

vulnerable and secure code in related scenarios. By further training directly on related vulnerabilities

instead of GitHub data, Securecoder with VUDENC bootstrapping performed better than Securecoder

without.

Future work that could be done is expanding the scope of SecureCoder to support more

vulnerabilities and be more universally applicable.

4. Conclusion

This paper presented SecureCoder, a novel framework designed to generate secure code snippets

using large language models. By leveraging a combination of rule-based detectors and a deep learning

model, SecureCoder effectively identifies and mitigates security vulnerabilities in generated code.

The experimental results demonstrate the framework’s superiority over existing methods, achieving

higher secure rates across a range of scenarios.

References

[1] Mario Rodriguez. Research: Quantifying GitHub Copilot’s impact on code quality. Oct. 10, 2023. url:github.blog/

2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/.

[2] OpenAI et al. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[3] Vision Research Reports. Generative AI In Coding Market. https://www.visionresearchreports.com/generative-ai-

in-coding-market/40820.2023.

[4] Thomas Dohmke. The economic impact of the AI-powered developer lifecycle and lessons from GitHub Copilot. url:

https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-

github-copilot/.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

135

[5] Identity Theft Resource Center. 2023 Data Breach Report. https://www.idtheftcenter.org/wp-content/uploads/2024/

01/ITRC_2023-Annual-Data- Breach-Report.pdf.

[6] Verizon. 2023 data breach investigations report. https://www.verizon.com/business/resources/T739/reports/2023-

data-breach-investigations-report-dbir.pdf.2023.

[7] Hammond Pearce et al. Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code Contributions.

2021. arXiv: 2108.09293 [cs.CR].

[8] Mohammed Latif Siddiq and Joanna C. S. Santos. “SecurityEval Dataset: Mining Vulnerability Examples to

Evaluate Machine Learning-Based Code Generation Tech- niques” . In: Proceedings of the 1st International

Workshop on Mining Software Repos- itories Applications for Privacy and Security (MSR4PS22) . 2022. doi:10.
1145/3549035.3561184.

[9] Ansong Ni et al. “Lever: Learning to verify language-to-code generation with exe- cution” . In: Proceedings of the

40th International Conference on Machine Learning (ICML’23). 2023.

[10] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:2107.03374 [cs.LG].

[11] Mohammed Latif Siddiq, Beatrice Casey, and Joanna C. S. Santos. A Lightweight Framework for High-Quality

Code Generation. 2023. arXiv: 2307.08220 [cs.SE].

[12] Catherine Tony et al. LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations. 2023. arXiv:

2303.09384 [cs.SE].

[13] Laura Wartschinski et al. “VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for

Python” . In: Information and Software Technology 144 (Apr. 2022), p. 106809. issn:0950-5849. doi:10.1016/j.

infsof.2021.106809. url:http://dx.doi.org/10.1016/j.infsof.2021.106809.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/116/2025.20425

136

